Edinburgh Research Explorer

Modest and variable efficacy of pre-exposure hydroxocobalamin and dicobalt edetate in a porcine model of acute cyanide salt poisoning

Research output: Contribution to journalArticle

Original languageEnglish
JournalClinical Toxicology
Early online date7 Aug 2019
DOIs
Publication statusE-pub ahead of print - 7 Aug 2019

Abstract

Background: Dicobalt edetate and hydroxocobalamin are widely used to treat hydrogen cyanide poisoning. However, comparative and quantitative efficacy data are lacking. Although post-exposure treatment is typical, it may be possible to administer these antidotes before exposure to first attenders entering a known site of cyanide release, as supplementary protection to their personal protective equipment.

Methods: We established an anaesthetised Gottingen minipig model of lethal bolus potassium cyanide (KCN) injection to simulate high dose hydrogen cyanide inhalation. Doses were similar to human lethal doses of KCN. Dicobalt edetate and hydroxocobalamin were administered shortly before KCN and their effect on metabolic and cardiovascular variables and survival time were measured.

Results: Increases in arterial lactate were similar after 0.08 and 0.12 mmol/kg KCN. KCN 0.08 mmol/kg was survived by 4/4 animals with moderate cardiovascular effects, while the 0.12 mmol/kg dose was lethal in 4/4 animals, with a mean time to euthanasia of 28.3 (SEM: 13.9) min. Administration of dicobalt edetate (0.021 mmol/kg, 8.6 mg/kg) or hydroxocobalamin (0.054 mmol/kg, 75 mg/kg) at clinically licenced doses had modest effect on lactate concentrations but increased survival after administration of KCN 0.12 mmol/kg (survival: dicobalt edetate 4/4, hydroxocobalamin 2/4) but not 0.15 mmol/kg (0/4 and 0/4, respectively). In a subsequent larger study, doubling the dose of hydroxocobalamin (0.108 mmol/kg, 150 mg/kg) was associated with a modest but inconsistent increased survival after 0.15 mmol/kg KCN (survival: control 0/8, 75 mg/kg 1/10, 150 mg/kg 3/10) likely due to variable pharmacokinetics.

Conclusions: In this porcine study of cyanide exposure, with pre-exposure antidote administration, licenced doses of dicobalt edetate and hydroxocobalamin were effective at just lethal doses but ineffective at less than twice the estimated LD50. The efficacy of a rapidly-administered double-dose of hydroxocobalamin was limited by variable pharmacokinetics. In clinical poisoning scenarios, with delayed administration, the antidotes are likely to be even less effective. New antidotes are required for treatment of cyanide exposures appreciably above the minimum lethal dose.

ID: 97755024