Edinburgh Research Explorer

Non-Relativistic Strings and Limits of the AdS/CFT Correspondence

Research output: Contribution to journalArticle

Open Access permissions



Original languageEnglish
Article number086019
JournalPhysical Review D, Particles and fields
Publication statusPublished - 24 Oct 2017
Externally publishedYes


Using target space null reduction of the Polyakov action we find a novel covariant action for strings moving in a torsional Newton-Cartan geometry. Sending the string tension to zero while rescaling the Newton-Cartan clock 1-form, so as to keep the string action finite, we obtain a non-relativistic string moving in a new type of non-Lorentzian geometry that we call $U(1)$-Galilean geometry. We apply this to strings on $AdS_5 \times S^5$ for which we show that the zero tension limit is realized by the Spin Matrix theory limits of the AdS/CFT correspondence. This is closely related to limits of spin chains studied in connection to integrability in AdS/CFT. The simplest example gives a covariant version of the Landau-Lifshitz sigma-model.

    Research areas

  • hep-th

Download statistics

No data available

ID: 57842465