Edinburgh Research Explorer

Ovine herpesvirus-2 encoded microRNAs target virus genes involved in virus latency

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions



  • Download as Adobe PDF

    Rights statement: This is an author manuscript that has been accepted for publication in Journal of General Virology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in Journal of General Virology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of 'Fair Use of Copyrighted Materials' (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://vir.sgmjournals.org, and is freely available without a subscription 12 months after publication.

    Accepted author manuscript, 403 KB, PDF-document

Original languageEnglish
Pages (from-to)472-480
JournalJournal of General Virology
Issue number2
Early online date1 Feb 2014
StateE-pub ahead of print - 1 Feb 2014


Herpesviruses encode miRNAs that target both virus and host genes; however their role in herpesvirus biology is poorly understood. We previously identified eight miRNAs encoded by OvHV-2; the causative agent of malignant catarrhal fever (MCF) and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF 20 (cell cycle inhibition), ORF 50 (reactivation) and ORF 73 (latency maintenance) each contain predicted targets for several OvHV-2 miRNAs. Co-transfection of miRNA mimics with luciferase reporter constructs containing the predicted targets showed the 5’ UTRs of ORF 20 and ORF73 contain functional targets for ovhv-miR-2 and ovhv2-miR-8 respectively, and the 3’UTR of ORF 50 contains a functional target for ovhv2-miR-5. Transfection of BJ1035 cells (an OvHV-2 infected bovine T cell line) with the relevant miRNA mimic resulted in a significant decrease in ORF 50 and a smaller but non-significant decrease in ORF 20. However, we were unable to demonstrate a decrease in ORF73. MCF is a disease of dysregulated lymphocyte proliferation, miRNA inhibition of ORF 20 expression may play a role in this aberrant lymphocyte proliferation. The proteins encoded by ORFs 50 and 73 play opposing roles in latency, it has been hypothesized that miRNA-induced inhibition of virus genes acts to ensure that fluctuations in virus mRNA levels do not result in reactivation in conditions that are unfavourable for viral replication, our data would support this hypothesis

    Research areas

  • Gammaherpesvirus, latency, miRNA

Download statistics

No data available

ID: 10813330