Edinburgh Research Explorer

Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical processes and microbial community dynamics

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Original languageEnglish
Article number789
Number of pages9
JournalNature Communications
Volume8
DOIs
Publication statusPublished - 6 Oct 2017

Abstract

Although regime shifts are known from various ecosystems, the involvement of microbial communities is poorly understood. Here we show that gradual environmental changes induced by, for example, eutrophication or global warming can induce major oxic-anoxic regime shifts. We first investigate a mathematical model describing interactions between microbial communities and biogeochemical oxidation-reduction reactions. In response to gradual changes in oxygen influx, this model abruptly transitions between an oxic state dominated by cyanobacteria and an anoxic state with sulfate-reducing bacteria and phototrophic sulfur bacteria. The model predictions are consistent with observations from a seasonally stratified lake, which shows hysteresis in the transition between oxic and anoxic states with similar changes in microbial community composition. Our results suggest that hysteresis loops and tipping points are a common feature of oxic-anoxic transitions, causing rapid drops in oxygen levels that are not easily reversed, at scales ranging from small ponds to global oceanic anoxic events.

    Research areas

  • ALTERNATIVE STABLE STATES, BACTERIAL COMMUNITIES, LAKE VECHTEN, FRESH-WATER, SULFIDE, OCEAN, ECOSYSTEMS, RECOVERY, STRATIFICATION, MICROORGANISMS

ID: 45742786