Edinburgh Research Explorer

Paramagnetic and glass transitions in sudoku

Research output: Contribution to journalArticlepeer-review

Related Edinburgh Organisations

Original languageEnglish
Article number031109
Number of pages3
JournalPhysical Review E - Statistical, Nonlinear and Soft Matter Physics
Issue number3
Publication statusPublished - 7 Sep 2012


We study the statistical mechanics of a model glassy system based on sudoku, a familiar and popular mathematical puzzle. Sudoku puzzles provide a very rare example of a class of frustrated systems with a unique ground state without symmetry. Here, the puzzle is recast as a thermodynamic system where the number of violated rules defines the energy. We use Monte Carlo simulation to show that the "sudoku Hamiltonian" exhibits two transitions as a function of temperature, a paramagnetic, and a glass transition. Of these, the intermediate condensed phase is the only one that visits the ground state (i.e., it solves the puzzle, though this is not the purpose of the study). Both transitions are associated with an entropy change, paramagnetism measured from the dynamics of the Monte Carlo run, showing a peak in specific heat, while the residual glass entropy is determined by finding multiple instances of the glass by repeated annealing. There are relatively few such simple models for frustrated or glassy systems that exhibit both ordering and glass transitions; sudoku puzzles are unique for the ease with which they can be obtained, with the proof of the existence of a unique ground state via the satisfiability of all constraints. Simulations suggest that in the glass phase there is an increase in information entropy with lowering temperature. In fact, we have shown that sudoku puzzles have the type of rugged energy landscape with multiple minima that typifies glasses in many physical systems. This puzzling result is a manifestation of the paradox of the residual glass entropy. These readily available puzzles can now be used as solvable model Hamiltonian systems for studying the glass transition.

    Research areas


ID: 11320707