Edinburgh Research Explorer

Phylogeography of HIV-1 suggests that Ugandan fishing communities are a sink for, not a source of, virus from general populations

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

    Final published version, 1019 KB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Article number1051
Number of pages8
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 31 Jan 2019

Abstract

Although fishing communities (FCs) in Uganda are disproportionately affected by HIV-1 relative to the general population (GP), the transmission dynamics are not completely understood. We earlier found most HIV-1 transmissions to occur within FCs of Lake Victoria. Here, we test the hypothesis that HIV-1 transmission in FCs is isolated from networks in the GP. We used phylogeography to reconstruct the geospatial viral migration patterns in 8 FCs and 2 GP cohorts and a Bayesian phylogenetic inference in BEAST v1.8.4 to analyse the temporal dynamics of HIV-1 transmission. Subtype A1 (pol region) was most prevalent in the FCs (115, 45.1%) and GP (177, 50.4%). More recent HIV transmission pairs from FCs were found at a genetic distance (GD) <1.5% than in the GP (Fisher’s exact test, p=0.001). The mean time depth for pairs was shorter in FCs (5 months) than in the GP (4 years). Phylogeographic analysis showed strong support for viral migration from the GP to FCs without evidence of substantial viral dissemination to the GP. This suggests that FCs are a sink for, not a source of, virus strains from the GP. Targeted interventions in FCs should be extended to include the neighbouring GP for effective epidemic control.

    Research areas

  • Molecular evolution, Viral epidemiology, Viral evolution, Viral transmission

Download statistics

No data available

ID: 77907249