TY - JOUR
T1 - Quantum Entanglement of Localized Excited States at Finite Temperature
AU - Caputa, Pawel
AU - Simon Soler, Joan
AU - Stikonas, Andrius
AU - Takayanagi, Tadashi
PY - 2015/1
Y1 - 2015/1
N2 - In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature.We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, infinite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.
AB - In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature.We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, infinite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.
U2 - 10.1007/JHEP01(2015)102
DO - 10.1007/JHEP01(2015)102
M3 - Article
VL - 2015
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
SN - 1126-6708
M1 - 102
ER -