Edinburgh Research Explorer

Sex-specific plasticity and genotype x sex interactions for age and size of maturity in the sheepshead swordtail, Xiphophorus birchmanni

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: ª 2 0 1 5 THE AUTHORS . J . E V O L. BI O L . J O U R N A L O F E V O L U T I O N A R Y B I O L O G Y P U B L I S H E D B Y J O H N WI L E Y & S O N S L T D O N B E H A L F O F E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y . THI S I S AN OPEN ACCESS ARTICLE UNDER THE TERMS OF THE CRE A T I V E COMMONS AT T R I B U T I O N L I C E N S E , WH I C H P E R M I T S US E , DI S T R IBU T I O N AND REPRODUCT ION IN ANY MEDI U M , PRO V I DED THE OR I G INAL WORK IS PROPE R LY CI T E D .

    Final published version, 589 KB, PDF document

    Licence: Unspecified

Original languageEnglish
Pages (from-to)645-656
JournalJournal of Evolutionary Biology
Volume29
Issue number3
Early online date8 Jan 2016
DOIs
Publication statusPublished - Mar 2016

Abstract

Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype-by-sex interaction (GxS) and sex-specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate inter-sexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large GxS. While cross-sex genetic correlations are close to zero suggesting sex-linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex-specific adaptive plasticity. At high density there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male-biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments female fitness may be limited by the lack of sex-specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism. This article is protected by copyright. All rights reserved.

    Research areas

  • Xiphophorus birchmanni, Genetic correlation, Life history, Plasticity, Quantitative genetics, Sexual conflict

Download statistics

No data available

ID: 23009333