Edinburgh Research Explorer

Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions



  • Download as Adobe PDF

    Rights statement: © 2014 Dennis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

    Final published version, 614 KB, PDF document

Original languageEnglish
Pages (from-to)378
JournalParasites and Vectors
Early online date19 Aug 2014
Publication statusPublished - 19 Aug 2014


BACKGROUND: Tsetse flies are the biological vectors of African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. The tsetse endosymbiont Sodalis glossinidius has been suggested to play a role in tsetse susceptibility to infection. Here we investigate the prevalence of African trypanosomes within tsetse from the Luambe National Park, Zambia and if there is an association between S. glossinidius and presence of trypanosomes within the tsetse examined.

METHODS: Tsetse representing three species (Glossina brevipalpis, Glossina morsitans morsitans and Glossina pallidipes), were sampled from Luambe National Park, Zambia. Following DNA extraction, PCR was used to examine the tsetse for presence of trypanosomes and the secondary endosymbiont S. glossinidius.

RESULTS: S. glossinidius infection rates varied significantly between tsetse species, with G. brevipalpis (93.7%) showing the highest levels of infection followed by G. m. morsitans (17.5%) and G. pallidipes (1.4%). ITS-PCR detected a wide variety of trypanosomes within the tsetse that were analysed. Significant differences were found in terms of trypanosome presence between the three tsetse species. A high proportion of G. m. morsitans were shown to carry T. brucei s.l. DNA (73.7%) and of these around 50% were positive for Trypanosoma brucei rhodesiense. T. vivax, T. godfreyi, T. simiae, T. simiae Tsavo and T. congolense were also detected. No association was found between the occurrence of S. glossinidius and the presence of trypanosome DNA in any of the three tsetse species tested.

CONCLUSION: The current work shows that T. b. rhodesiense was circulating in Luambe National Park, representing a risk for people living in the park or surrounding area and for tourists visiting the park. The differences in trypanosome DNA presence observed between the different tsetse species tested may indicate host feeding preferences, as the PCR will not discriminate between a fly with an active/resident infection compared to a refractory fly that has fed on an infected animal. This makes it difficult to establish if S. glossinidius may play a role in the susceptibility of tsetse flies to trypanosome infection.

Download statistics

No data available

ID: 16950834