Edinburgh Research Explorer

Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: Freely available online through the PNAS open access option.

    Final published version, 1 MB, PDF document

http://www.pnas.org/content/109/17/6757
http://F1000.com/716747960
Original languageEnglish
Pages (from-to)6757-6762
JournalProceedings of the National Academy of Sciences
Volume109
Issue number17
Early online date10 Apr 2012
DOIs
Publication statusPublished - Apr 2012

Abstract

The circadian clocks that drive daily rhythms in animals are tightly coupled among the cells of some tissues. The coupling profoundly affects cellular rhythmicity and is central to contemporary understanding of circadian physiology and behavior. In contrast, studies of the clock in plant cells have largely ignored intercellular coupling, which is reported to be very weak or absent. We used luciferase reporter gene imaging to monitor circadian rhythms in leaves of Arabidopsis thaliana plants, achieving resolution close to the cellular level. Leaves grown without environmental cycles for up to 3 wk reproducibly showed spatiotemporal waves of gene expression consistent with intercellular coupling, using several reporter genes. Within individual leaves, different regions differed in phase by up to 17 h. A broad range of patterns was observed among leaves, rather than a common spatial distribution of circadian properties. Leaves exposed to light-dark cycles always had fully synchronized rhythms, which could desynchronize rapidly. After 4 d in constant light, some leaves were as desynchronized as leaves grown without any rhythmic input. Applying light-dark cycles to such a leaf resulted in full synchronization within 2-4 d. Thus, the rhythms of all cells were coupled to external light-dark cycles far more strongly than the cellular clocks were coupled to each other. Spontaneous desynchronization under constant conditions was limited, consistent with weak intercellular coupling among heterogeneous clocks. Both the weakness of coupling and the heterogeneity among cells are relevant to interpret molecular studies and to understand the physiological functions of the plant circadian clock.

    Research areas

  • Systems Biology, Reporter Genes, image analysis, Plant science , Gene expression, cell signaling

Download statistics

No data available

ID: 2610331