Edinburgh Research Explorer

Structural basis for DNA 3'-end processing by human tyrosyl-DNA phosphodiesterase 1

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. © The Author(s) 2017

    Final published version, 2 MB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Article number24
Number of pages13
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 2 Jan 2018

Abstract

Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates. Crystal structures of Tdp1-DNA complexes capture the DNA repair machinery after 3'-end cleavage; these reveal how Tdp1 coordinates the 3'-phosphorylated product of nucleosidase activity and accommodates duplex DNA. A hydrophobic wedge splits the DNA ends, directing the scissile strand through a channel towards the active site. The F259 side-chain stacks against the -3 base pair, delimiting the junction of duplexed and melted DNA, and fixes the scissile strand in the channel. Our results explain why Tdp1 cleavage is non-processive and provide a molecular basis for DNA 3'-end processing by Tdp1.

    Research areas

  • DNA, DNA damage and repair, Mass spectometry, X-ray crystallography

Download statistics

No data available

ID: 50348560