Edinburgh Research Explorer

The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage with cerebral amyloid angiopathy: model development and diagnostic test accuracy study

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

    Final published version, 485 KB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

https://www.sciencedirect.com/science/article/pii/S1474442218300061
Original languageEnglish
Pages (from-to)232-240
Number of pages9
JournalLancet Neurology
Volume17
Issue number3
Early online date10 Jan 2018
DOIs
Publication statusPublished - 1 Mar 2018

Abstract

Background:Identification of lobar spontaneous intracerebral haemorrhage associated with cerebral amyloid angiopathy (CAA) is important because it is associated with a higher risk of recurrent intracerebral haemorrhage than arteriolosclerosis-associated intracerebral haemorrhage. We aimed to develop a prediction model for the identification of CAA-associated lobar intracerebral haemorrhage using CT features and genotype.

Methods: We identified adults with first-ever intracerebral haemorrhage diagnosed by CT, who died and underwent research autopsy as part of the Lothian IntraCerebral Haemorrhage, Pathology, Imaging and Neurological Outcome (LINCHPIN) study, a prospective, population-based, inception cohort. We determined APOE genotype and radiologists rated CT imaging appearances. Radiologists were not aware of clinical, genetic, and histopathological features. A neuropathologist rated brain tissue for small vessel diseases, including CAA, and was masked to clinical, radiographic, and genetic features. We used CT and APOE genotype data in a logistic regression model, which we internally validated using bootstrapping, to predict the risk of CAA-associated lobar intracerebral haemorrhage, derive diagnostic criteria, and estimate diagnostic accuracy.

Findings: Among 110 adults (median age 83 years [IQR 76–87], 49 [45%] men) included in the LINCHPIN study between June 1, 2010 and Feb 10, 2016, intracerebral haemorrhage was lobar in 62 (56%) participants, deep in 41 (37%), and infratentorial in seven (6%). Of the 62 participants with lobar intracerebral haemorrhage, 36 (58%) were associated with moderate or severe CAA compared with 26 (42%) that were associated with absent or mild CAA, and were independently associated with subarachnoid haemorrhage (32 [89%] of 36 vs 11 [42%] of 26; p=0·014), intracerebral haemorrhage with finger-like projections (14 [39%] of 36 vs 0; p=0·043), and APOE ɛ4 possession (18 [50%] of 36 vs 2 [8%] of 26; p=0·0020). A prediction model for CAA-associated lobar intracerebral haemorrhage using these three variables had excellent discrimination (c statistic 0·92, 95% CI 0·86–0·98), confirmed by internal validation. For the rule-out criteria, neither subarachnoid haemorrhage nor APOE ɛ4 possession had 100% sensitivity (95% CI 88–100). For the rule-in criteria, subarachnoid haemorrhage and either APOE ɛ4 possession or finger-like projections had 96% specificity (95% CI 78–100).

Interpretation: The CT and APOE genotype prediction model for CAA-associated lobar intracerebral haemorrhage shows excellent discrimination in this cohort, but requires external validation. The Edinburgh rule-in and rule-out diagnostic criteria might inform prognostic and therapeutic decisions that depend on identification of CAA-associated lobar intracerebral haemorrhage.

Funding: UK Medical Research Council, The Stroke Association, and The Wellcome Trust.

Download statistics

No data available

ID: 47405204