Edinburgh Research Explorer

Thermocapillary effects on steadily evaporating contact line: A perturbative local analysis

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Original languageEnglish
Article number072105
Number of pages38
JournalPhysics of Fluids
Volume24
Issue number7
DOIs
Publication statusPublished - Jul 2012

Abstract

The evaporation process taking place close to the three-phase contact line is considered and studied theoretically using a linear stability analysis approach. A domain perturbation method, taking into consideration thermocapillary effects and surface forces, is used to develop the higher-order solution in terms of series expansion about lubrication condition. A closed-form solution is found for the film thickness, the pressure jump across the liquid-vapor interface and the evaporative flux in the vicinity of the contact line. The key novelty in this work is considering thermocapillary instability for very thin films (similar to 10 nm) accounting for surface forces. For (quasi-) flat-very-thin films, the analysis shows no instability, which is consistent with general knowledge in this field. However, for films extending from a meniscus, as encountered in wetting configurations, it is found that the competition between London-van der Waals, capillary, and thermocapillary forces leads to contact line instability and behavior revealed for the first time. According to the sign of the Marangoni number, the instability can enhance (if positive) or reduce (if negative) the evaporation rate by widening out or narrowing, respectively, the contact region and, in both cases, significantly modifies the vortical structure of the flow. If the Marangoni number is positive, the film interface close to the contact line can exhibit corrugations. The occurrence of these latter is discriminated, in addition to the Marangoni number, by the value of three operating parameters, namely the film aspect ratio, the ratio of the film diffusive thermal resistance to evaporative heat transfer resistance, and the ratio of capillary pressure to disjoining pressure. By modifying the physical and operating parameters, it is also shown that the system can be optimized in order to suppress these corrugations.

ID: 5285231