Research output: Contribution to journal › Article › peer-review
Rights statement: FEBS Letters (2018) © 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Final published version, 707 KB, PDF document
Licence: Creative Commons: Attribution (CC-BY)
Original language | English |
---|---|
Number of pages | 20 |
Journal | FEBS Letters |
Volume | 593 |
Issue number | 3 |
Early online date | 7 Dec 2018 |
DOIs | |
Publication status | Published - Feb 2019 |
The plant‐specific protein GIGANTEA (GI) controls many developmental and physiological processes, mediating rhythmic post‐translational regulation. GI physically binds several proteins implicated in the circadian clock, photoperiodic flowering, and abiotic stress responses. To understand GI's multifaceted function, we aimed to comprehensively and quantitatively identify potential interactors of GI in a time‐specific manner, using proteomics on Arabidopsis plants expressing epitope‐tagged GI. We detected previously identified (in)direct interactors of GI, as well as proteins implicated in protein folding, or degradation, and a previously uncharacterized transcription factor, CYCLING DOF FACTOR6 (CDF6). We verified CDF6's direct interaction with GI, and ZEITLUPE/FLAVIN‐BINDING, KELCH REPEAT, F‐BOX 1/LIGHT KELCH PROTEIN 2 proteins, and demonstrated its involvement in photoperiodic flowering. Extending interaction proteomics to time series provides a data resource of candidate protein targets for GI's post‐translational control.
ID: 77877636