Deconstructing mutation in Breton

Citation for published version:
Iosad, P 2012, 'Deconstructing mutation in Breton' Paper presented at Workshop on the Representation and Selection of Exponents (WoRSE), Tromsø, Norway, 6/06/12 - 8/06/12.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Deconstructing mutation in Breton

Pavel Iosad
Universitetet i Tromsø/CASTL
pavel.iosad@uit.no

Workshop of the Representation and Selection of Exponents
8th June, 2012
University of Tromsø/CASTL

Plan

▶ What is “mutation”, and who’s in charge?
▶ Assumptions
 ▶ Substance-free representations
 ▶ Stratal computation
▶ Mutation in Breton
▶ It’s all phonological, but...
 ▶ Coalescence vs. floating features
 ▶ Stratal differences
 ▶ Triggering differences
▶ Overall, Breton mutation is not very problematic for phonological theory
▶ But we need to understand the triggering better

Consonant mutation

One definition
[T]he term “consonant mutation” refers to a class of processes by which a consonant turns into a segment with a different degree of voicing, continuancy, or nasality that is not due to neutralization or assimilation to a neighboring segment of the same natural class. (Grijzenhout 2011)

▶ An example: Fula

(1) a. (i) [ullo] 'Fula person'
 (ii) [fule] 'Fula people'
 b. (i) [o warii] '(s)he came'
 (ii) [be mbari] 'they came'

Analytical challenges

▶ What is the rationale, i.e. how do we describe the pattern phonologically?
▶ What is the mechanism: is it a piece of phonology, is there morphology involved? Anything else?
▶ What is the trigger: where do the mutation mechanisms come from?
 ▶ Is it just regular phonology?
 ▶ Is it phonological bits and pieces that happen to come from the lexicon?
 ▶ Is it phonological bits and pieces that are the exponents of some morphology?
 ▶ Is it just some totally random, subcategorization-driven insertion, i.e. the debris of history (à la Yu 2007)? Although it still has to be inserted in response to something...
Celtic mutations

- Sometimes seen as a “prototypical” type of mutation
- Huge literature: here’s just a selection (only the phonological literature)
- The phonology can be tricky
 - Chain shifts (e.g. Irish [p] → [f], [f] → 0)
 - Funky changes (Irish [d] → [ʝ] even as [b] → [v])
 - Unnatural classes (Welsh [m] → [v] but not [n] → [ð])

Previous treatments

- Once we abandoned arbitrarily triggered rules, the standard approach has been autosegmental
- Starting with Lieber (1983), also Swingle (1993); Wolf (2005, 2007)
- Problems: hard to get in (parallel) OT because of the high heterogeneity of changes
 - Hard to express with SPE features, contrast Ó Dochartaigh (1978); Ewen (1982); Grijzenhout (1995); Cyran (2010)
- Spirited defence by Wolf (2005, 2007) relies on somewhat suspect constraints
 - MAXFLEX: not really explanatory, only works in concert with *FLEX
 - No VACUOUS DOCKING: tricky to formalize
 - No TAUTOMORPHEMIC DOCKING: decidedly non-modular

Triggering

- Random lexical items
- Lexical items only under certain morphosyntactic conditions (e.g. definite article only if feminine singular — most Celtic languages)
- Certain morphosyntactic and/or linear conditions:
 - Welsh: adjectives mutate if governed by a fem sg noun — but only in NA order
 - ...although gender/number agreement still persists in AN constructions
 - Welsh: the XP-trigger hypothesis (Borsley & Tallerman 1996; Tallerman 2006; Borsley et al. 2007): “An XP mutates if it is c-commanded by the preceding adjacent XP”

Abandoning phonology I

- Problems with triggers
- Random lexical items: OK, the autosegment is just part of the random item
- Lexical items + morphosyntax: ambiguous
 - Homophony modulo the floating material: a bit inelegant
 - Mutation spells out the grammatical features (e.g. fem sg def): hasn’t really been tried to my knowledge
- Pure syntax (like the XP trigger): utterly mysterious
 - Just insert an autosegment in this syntactic configuration (Lieber 1987; Borsley & Tallerman 1996)
 - Exception: Roberts (2005) tries to express the Welsh facts with Case
 - Tallerman (2006); Borsley et al. (2007) argue against the syntax
Abandoning phonology II

- Green (2006, 2007): mutation is like Case, a feature that words agree for
- The phonological rationale is arbitrary and a fact of lexical insertion
- Similar approaches: Stewart (2004); Iosad (2008), also Kaye & Pöchtrager (this workshop)
- But is “mutation” a thing?

Substance-free phonology

- Morén (2006, 2007); Blaho (2008); Youssef (2010); Iosad (in preparation)
- Phonology is an autonomous module of grammar
- No universal phonology-phonetics mapping
- No universal feature set (a bit like Mielke 2007)
- No functional considerations in computation
- Phonological representations are determined based on the patterns in each language at hand

Stratal OT

- Computation proceeds in three steps
 - Stem-level (at least root-to-stem, stem-to-stem derivation)
 - Word-level (stem-to-word)
 - Postlexical (word concatenation)
- Potential reranking across the strata
- “Bracket erasure”: only the output of the previous stratum is visible to each computation

Bothoa Breton mutations

- Breton dialect of Bothoa
- Description by Humphreys (1995)
- Somewhat atypical prosodic system
- But the mutation system is largely in line with what you find across Breton dialects
- With one exception that we come back to later
Bothoa Breton consonants

See the appendix for the featural structures I propose

<table>
<thead>
<tr>
<th>Manner</th>
<th>Labial</th>
<th>Coronal</th>
<th>Postalveolar</th>
<th>Palatal-labial</th>
<th>Palatal</th>
<th>Dorsal</th>
<th>Glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stops</td>
<td>p b t d</td>
<td>k g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affricates</td>
<td>f v s z</td>
<td>f j g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fricatives</td>
<td>m n j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasals</td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterals</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximants</td>
<td>w j</td>
<td>q i j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mutations: lenition

<table>
<thead>
<tr>
<th>Process</th>
<th>Voicing</th>
<th>Spirantization</th>
<th>Deletion</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmutated</td>
<td>p t q f k h r m g q w d $</td>
<td>d $</td>
<td>d</td>
<td>d $</td>
</tr>
<tr>
<td>Lenited</td>
<td>b d d $ g r v v h m q w v v h m q w v</td>
<td>v v h m q w v v h m q w v</td>
<td>v v h m q w v v h m q w v</td>
<td></td>
</tr>
</tbody>
</table>

Note the heterogeneity of the processes

Chain shift alert: [p] → [b] → [v]

Mutations: spirantization

<table>
<thead>
<tr>
<th>Process</th>
<th>Voicing</th>
<th>Fission</th>
<th>Spirantization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmutated</td>
<td>p t q f</td>
<td>k</td>
<td>q f t y t q k l</td>
</tr>
<tr>
<td>Spirantized, phonological</td>
<td>v z h</td>
<td>h h h q h l h r h w</td>
<td></td>
</tr>
<tr>
<td>Spirantized, phonetic</td>
<td>[v] [z] [h] [h] [h] [h] [h] [h] [h] [h]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the behaviour of [q f] is different depending on the following vowel

Note spirantization-and-voicing of [p t] but not [b d]

Mutations: provection

<table>
<thead>
<tr>
<th>Process</th>
<th>Voicing</th>
<th>Devoicing</th>
<th>Prefixation of [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmutated</td>
<td>b d d $</td>
<td>q w</td>
<td>v z 5</td>
</tr>
<tr>
<td>Proyected, phonetic</td>
<td>p t q</td>
<td>k kw f s j</td>
<td>[hV] [s] [v] [v] [l] [ŋn] [ŋn]</td>
</tr>
</tbody>
</table>

Basically, you devoice obstruents and prefix [h] to sonorants and vowels
Analysis

Provection

(2) a. (i) ['maːb̥] son
 (ii) [o 'm maːb̥] your (pl.) son
 (iii) [o 'hmaːb̥] b. (i) ['alve] key
 (ii) [o 'halve] your (pl.) key
c. (i) ['brɔːr] brother
 (ii) [o 'prøːr] your (pl.) brother

▶ Best treated simply as coalescence with [h]
▶ If the clitic is /oh/, we only have to ensure coalescence
▶ This is simply phonology
▶ Prediction: provection is not morphologically constrained in interesting ways
Correct

Pavel Iosad (UiT/CASTL)
Deconstructing mutation in Breton 20/37 WoRSE 20 / 37

Analysis

Provection: the autosegmental analysis

h₁ C-lar b₂ C-lar C-pl C-man ⇒ p₁,₂ C-lar₁ C-pl₁ C-man
 | [vcl] | [lab] | [cl] | [vcl] | [lab] | [cl] |

▶ Violated constraints: Max(C-lar), DepLink(Rt, C-lar), DepLink(Rt, [vcl])
▶ Highly ranked constraints: whatever causes the coalescence, MaxLink(Rt, [vcl])
▶ So far, so good

Pavel Iosad (UiT/CASTL)
Deconstructing mutation in Breton 21/37 WoRSE 21 / 37

Analysis

Spirantization

Spirantization: the explananda

▶ There are actually two types of spirantization
 ▶ One affects only [k] and [ʧ], morphologically restricted
 ▶ Another one gives the full package, associated with random lexical items
▶ Why the morphological restriction?
▶ Why the different behaviour of [ʧ] before [iy] contra [ɛ ø a]?
▶ Stratal OT to the rescue!

Pavel Iosad (UiT/CASTL)
Deconstructing mutation in Breton 22/37 WoRSE 22 / 37

Analysis

Detour: stratal aspects of palatalization I

▶ Unlike other Breton dialects, Bothoa shows a process of palatalization
▶ /k y/ → [ʧ dʒ] / _ i, y
▶ This is exactly where we get [h] and not [hj] as the spirantization of [ʧ]

(3) a. [ˈʧiː] ‘dog’
b. [ə hiː] ‘a dog’
c. *[ə çiː]

▶ Makes sense that ‘dog’ is /ki/ (so in other dialects, too)

Pavel Iosad (UiT/CASTL)
Deconstructing mutation in Breton 23/37 WoRSE 23 / 37
Detour: stratal aspects of palatalization II

- Crucially: palatalization is only active at the stem level
 - No tautomorphemic [ki ɡi ky ɡy] (with one exception — it's OK, stem-level rules have exceptions; Bermúdez-Otero forthcoming)
 - No palatalization before word-level suffixes:
 - a. [ˈburkiɡ] ‘village population’
 - b. [ˈpleɡiɡ] ‘you (pl.) will fold’
- No palatalization where [i] is derived
 - a. [ˈklɒɡe] ‘ladle’
 - b. [ˈklɒɡiɡad̥] ‘ladleful’

What about [hj]?

- a. [ˈʧɛzəɡ̊] ‘horses’
- b. [mə ˈhjɛzəɡ̊] ‘my horses’

- Proposed analysis:
 1. Underlyingly, ‘horses’ is /kiɛzəɡ/.
 2. At the stem level, it is parsed as [kjezɡ] to avoid hiatus
 3. Palatalization fails to apply because it is only allowed by nuclear [i]: *[ʧjɛzəɡ]
 4. And coalescence is disallowed at the stem level
 5. At the word level, both [k] and [ʧ] become [h]

- Word-level mutation-triggered mappings
 - /ʧiː/ → [ˈhiː]
 - /kjɛzəɡ/ → [ˈhjɛzəɡ̊]
 - Just as [kriːb] ‘comb’ becomes [mə ˈhriːb̥] ‘my comb’

Stratal aspects cont’d

- What about unmutated ‘horses’?
 - It comes out of the stem level as [kjɛzɡ]
 - At the word level, /kj/ should be allowed to coalesce to [ʧ]
 - Correct

- a. [ˌlasˈtikən] ‘rubber band’
- b. [ˈlastiʧəw] ‘rubber bands’

- Plenty of other evidence for coalescence at the word level with non-dorsals

Spirantization: the phonology

- k2
 - C-man1
 - C-man
 - C-lar
 - C-man1,2
 - C-lar
 - h2

- It looks like subtraction, but I suggest it is additive
- Max(C-man) forces coalescence
- But DepLink(C-man, [cl]) outranks Max([cl])
- There is a link between the surface correspondents of C-man1 and [cl],
 which gives the violation
- No need for MaxFloat
Analysis

Spirantization

- Restricted spirantization: only [k] and [ʧ] are affected, although floating C-man could do similar damage elsewhere (indeed we shall see it does)
- The floating C-man has to come in at the word level, because the distinction between [ki] and [kiV] is erased in its output
- Floating C-man is a word-level morphological element which subcategorizes (Paster 2006; Bye 2007; Yu 2007) just for [k ʧ] at the point of lexical insertion
- We expect the mutation to be morphologically restricted

Correct: “the definite and indefinite articles cause restricted spirantization only for [masc sg], [masc pl anim], [fem pl]”

Lenition

- Voiceless stops become voiced: [p t ŋ k] → [b d ŋ k]
- Floating C-lar, with a DefLink solution
- Voiced stops spirantize (chain shift): [b g] → [v h]
- Floating C-man
- But [d] and [dʒ] are unaffected
- Although [m] and [ŋ] are not: [m ŋ] → [v r]

Lenition must be postlexical

Reason: there is a “failure of lenition” following obstruents

\[(8) \text{Lenition}\]

a. [ˈkoːz̥]	‘old’
b. [o ˌɡaːdər ˈɡoːz̥]	‘an old chair’
c. [on ˌiːli s ˈkoːz̥]	‘an old church’
d. *[on ˌiːliz ˈɡoːz̥]	

To make a long story short…

- The floating C-lar docks to a preceding consonant instead of the following one, creating a domain for [vcl] spreading
Failure of lenition: the autosegmental analysis

Crucially, the process can only apply when there is word concatenation, i.e. it is postlexical.

Stratal aspects of lenition I

- The behaviour of [dʒ] corroborates this stratal insight
- In principle, [dʒ] can be underlying or derived from [ɡ] via palatalization
- In lenition, [dʒ] → [dʒ] but [ɡ] → [h]
- We could expect that different types of [dʒ] could behave differently in lenition
- For instance, [dʒ] → [h] before [i y]

Potential underlying /ɡiːr/ for [dʒiːr] ‘word’ (Welsh gair)
- [ˈdʒiːr] ‘word’
- [iˈdʒiːr] ‘his word’
- *[iˈhiːr]

- Or [dʒ] → [hj]

These patterns are unattested
- Mysterious under a standard approach
- Explained in stratal terms: the distinction between /dʒ/ and potential /ɡi/ is obliterated by lower levels, so when lenition comes in postlexically, it does not have access to that information
- Further support for postlexical affiliation: Pyatt (2003) — lenition sensitive to prosodic structure

Unanswered questions

- Lenition is postlexical, so it is difficult to ascribe it to some morphology
- But it does seem to involve subcategorization, like the morphological process of spirantization
- So where in the syntax do the floating bits of phonology come from?
 - Random lexical items: this would require multiple trigger allomorphs differing only in the mutation-causing material
 - Some morphosyntactic conditioning: some solution à la spirantization may be possible
- Similar conundrum to the Welsh “direct object mutation”
Conclusion

Mutations in Bothoa Breton are mostly amenable to straightforward phonological analyses

Although some subcategorization appears inevitable

Stratal computation coupled with substance-free representations gives us substantial mileage with fairly standard OT devices

Still, some of the lenition cases appear to lack clear morphosyntactic motivation — not for the first time

Trugarez!

Thank you!

References

References IV

References V

