The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Bacteriology

Publisher Rights Statement:
Free in PMC.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The *udhA* Gene of *Escherichia coli* Encodes a Soluble Pyridine Nucleotide Transhydrogenase

BIRGITTE BOONSTRA, CHRISTOPHER E. FRENCH,† IAN WAINWRIGHT, AND NEIL C. BRUCE

Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom

Received 9 September 1998/Accepted 16 November 1998

The *udhA* gene of *Escherichia coli* was cloned and expressed in *E. coli* and found to encode an enzyme with soluble pyridine nucleotide transhydrogenase activity. The N-terminal end of the enzyme contains the fingerprint motif of a dinucleotide binding domain, not present in published *E. coli* genome sequences due to a sequencing error. *E. coli* is hereby the first organism reported to possess both a soluble and a membrane-bound pyridine nucleotide transhydrogenase.

Pyridine nucleotide transhydrogenases catalyze the reversible transfer of reducing equivalents between NAD and NADP pools according to the following equation:

\[
\text{NAD}^+ + \text{NADH} \rightleftharpoons \text{NADPH} + \text{NAD}^+ \tag{1}
\]

Based on the stereospecificity of the transfer, two groups of transhydrogenases have been defined. The AB transhydrogenases specifically transfer the 4A hydrogen of the nicotinamide ring of NADH to NADP\(^+\) and the 4B hydrogen from NADPH to NAD\(^+\), while the BB transhydrogenases transfer the 4B hydrogen from both NADPH and NADH (16). The AB transhydrogenases are found in mitochondria and in some bacteria, such as *Escherichia coli* (6). They are integral membrane proteins bound to the inner mitochondrial membrane or the bacterial membrane where they couple the transfer of hydride from NADH to NADP\(^+\) with proton import (12). The genes encoding these enzymes have been cloned from numerous sources (1, 4, 27), facilitating the study of these membrane-bound transhydrogenases, and their physiological role is assumed to be the generation of NADPH, which can be used for energy generation (20).

The first soluble pyridine nucleotide transhydrogenase gene (*sth*) cloned was from *P. fluorescens* and revealed that the enzyme was related to the family of flavoprotein disulfide oxidoreductases (7). This family of enzymes includes the well-characterized dihydrolipoamide dehydrogenase, glutathione reductase, and mercuric reductase. These enzymes are active as homodimers and possess a characteristic redox-active disulfide bond. The subunits of these enzymes consist of an N-terminal FAD binding domain, a central NAD(P) binding domain, and a C-terminal dimerization domain (26). However, one of the cysteines involved in the redox-active disulfide bond characteristic of this family of enzymes was lacking in the *P. fluorescens sth* sequence. The *sth* sequence was found to be most similar to an *E. coli* gene of unknown function (*udhA*), showing 60% sequence identity and 77% similarity (7).

In order to investigate the identity of *udhA* from *E. coli*, and because no transhydrogenase activity could be detected in extracts of *E. coli* grown on rich medium under standard conditions, we cloned and overexpressed this gene in order to study its product.

Cloning and sequence analysis of *udhA* from *E. coli*. Based on the published *E. coli* genome sequence (GenBank no. U00006), oligonucleotides were designed in order to amplify by PCR the *udhA* gene from *E. coli* JM109 cells. The primers 5'-AGGGATCCAAATTAAACGTCACGGGC-3' and 5'-CCAT CGATGGGGTGTTTATCTGC-3' (with restriction sites underlined), annealing at positions approximately 150 bp upstream and downstream, respectively, of the potential structural gene, were used. PCR was performed with 30 s of denaturing (94°C), 30 s of annealing (55°C), and 90 s of polymerization (72°C) for 30 cycles, with an additional 90 s of denaturing prior to the first cycle (polymerase added after the 90 s) and 3 min of polymerization after the last cycle. The 1.6-kb PCR product was digested with *Bam*HI and *Cla*I and cloned into the multiple cloning site of pBluescript SK(+) (no. 52325; Stratagene). The resulting construct was designated pUDHA1 and the insert was sequenced in both orientations. The *udhA* sequence and the deduced amino acid sequence are given in Fig. 1. An open reading frame encoding a protein of 466 amino acids (including the initiating Met) was identified, with *E. coli*-like −35 and −10 promoter sequences and a Shine-Dalgarno sequence upstream of the initiating ATG (Fig. 1). The molecular mass of the protein excluding the initiating methionine was determined by the Genetics Computer Group PEPTIDESORT program.
The sequence differed from previously published genomic sequences (GenBank no. U00006, X66026, and AE000470) in having a 1-base deletion (a C) after nucleotide 40 (Fig. 1). This extra base in previously published sequences had given rise to a deduced protein sequence (P27306) which started at the methionine 22 amino acids downstream of the methionine presented in this study to be the start of the protein (see below). The N-terminal part of the protein missing in previously deduced sequences contains the amino acid sequence Gly-X-Gly-X-X-Gly/Ala, which is characteristic for a dinucleotide binding domain (Rossman fold). Homology with the disulfide pyridine nucleotide oxidoreductases (see Fig. 4) suggests that this is the FAD binding domain. The protein was found to be 59% identical and 77% similar to P. fluorescens STH.

Expression of recombinant STH in E. coli. Crude extracts were prepared from JM109/pUDHA1, grown to saturation in SOB medium (Difco) at 37°C, and assessed for STH activity. STH activity was assayed by monitoring the reduction of thio-nicotinamide adenine dinucleotide (tNAD+) at 400 nm in a reaction mixture consisting of 0.1 mM NADPH and 0.1 mM tNAD+ (Sigma Chemical Co.) in 50 mM Tris-HCl buffer (pH 7.0) at 30°C. The molar extinction coefficient of tNADH at 400 nm was taken as 11,300 liters mol\(^{-1}\) cm\(^{-1}\) (5). One unit of enzyme activity was defined as the amount of activity reducing 1 μmol of tNAD+ per min under these conditions. Protein concentration was measured by using a reagent from Pierce (Rockford, Ill.). Control extracts of JM109 grown under the same conditions did not have measurable STH activity (lowest detectable activity, approximately 0.001 U/mg) while extracts of the recombinant cells, JM109/pUDHA1, possessed about 2.9 U of STH activity per mg. This result implies that the udhA gene of E. coli encodes an enzyme with STH activity, and its putative product was therefore designated STH.

Purification and characterization of recombinant E. coli STH. The recombinant STH was purified to apparent homogeneity in a single affinity chromatography step by using adenosine-2',5'-diphosphate agarose. The protocol used for the purification of P. fluorescens STH was applied except that the 0.7 M NaCl wash step was replaced by 0.5 M NaCl (7). A total of 1,600 U was loaded onto a column with a 6-ml packed volume in the presence of 5 mM CaCl\textsubscript{2}. The most active eluted fractions, totalling 9.6 ml, were pooled and dialyzed against 50 mM Tris-HCl buffer (pH 7.0) with 5 mM dithiothreitol (DTT) in order to remove salts and reduce the pH. The product contained 1,150 U of STH at a specific activity of 85 U/mg. The specific activity of the purified E. coli STH is about 3.5-fold lower than that of the P. fluorescens STH under standard assay conditions (7). An expression level of about 3.5% of total soluble protein was estimated. The protein appeared to be homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Fig. 2), and the sub-
unit M_t determined from SDS-PAGE correlates well with the calculated size and with that reported for *P. fluorescens*, *P. aeruginosa*, and *A. vinelandii* STHs (7, 17, 23). The N-terminal sequence of the recombinant enzyme was determined by automated Edman degradation and was found to be P-H-S-Y-D-Y-D-A-I-V-I-G-S-G-P-G-E-(R/G)-A-A-M-G-L-V-K. This is consistent with the deduced amino acid sequence excluding the initiating methionine and confirmed the translation start of the *udhA* gene and the presence of a Rossman fold fingerprint motif at the N terminus.

The UV-visible absorption spectrum of the purified STH (Fig. 3) has a peak at 444 nm with a shoulder at 472 nm, and it is characteristic of an oxidized flavoprotein (15). When the enzyme was boiled and the denatured protein was removed by centrifugation, the supernatant retained the yellow coloration and showed the visible absorption spectrum of a free flavin. The flavin liberated in this way was subjected to thin-layer chromatography together with the flavin standards riboflavin, flavin mononucleotide, and FAD. The flavin liberated from chromatography showed the visible absorption spectrum of a free flavin. (Fig. 3) has a peak at 444 nm with a shoulder at 472 nm, and it is characteristic of an oxidized flavoprotein (15). When the enzyme was boiled and the denatured protein was removed by centrifugation, the supernatant retained the yellow coloration and showed the visible absorption spectrum of a free flavin. The flavin liberated in this way was subjected to thin-layer chromatography together with the flavin standards riboflavin, flavin mononucleotide, and FAD. The flavin liberated from chromatography together with the flavin standards riboflavin, flavin mononucleotide, and FAD. The flavin liberated from chromatography showed the visible absorption spectrum of a free flavin.

In order to get an estimate of the native size of the *E. coli* STH, gel filtration on Superose 6 10/30 (Pharmacia) was performed. The column was equilibrated with 50 mM Tris-HCl (pH 7.0) containing 100 mM NaCl and 5 mM DTT, and the STH was dialyzed against the same buffer prior to application. The column was calibrated with appropriate standards (thryglobulin, ferritin, catalase, aldolase, albumin, and ovalbumin [from Pharmacia Biotech]; 200 μl of 1- to 5-mg/ml solutions), and STH (200 μl at a concentration of 1.0 mg/ml) was loaded, all at a flow rate of 0.2 ml/min. STH was eluted as a broad peak with an average molecular mass (\pm standard error) of 386 \pm 31 kDa and a shoulder at the monomer size, 51.6 \pm 3.5 kDa (data not shown). This shows that *E. coli* STH does form multimeric structures; however, the enzyme is different from the *Pseudomonas* and *Azotobacter* STHs as it is devoid of large polymers. The average molecular weight suggests that the *E. coli* STH is present in a form consisting of seven or eight monomers. As the *A. vinelandii* STH is though to have a minimal active form consisting of eight subunits (22), this could suggest that these two STHs have a similar subunit arrangement.

Sequence comparisons. The deduced amino acid sequence of the *E. coli* STH was compared to other sequences in protein databases by using the BLAST 2 service of the National Center for Biotechnology Information (NCBI) accessed at http://www.ncbi.nlm.nih.gov (Fig. 4). Various dihydrolipoamide dehydrogenases showed up to 27% identity and 45% similarity to the *E. coli* STH. The purified *E. coli* STH did not show significant activity with lipoamide ($<$0.1 U/mg) in an assay system consisting of 0.2 mM lipoamide and 0.2 mM NADH or NADPH in 50 mM Tris-HCl (pH 7.0) at 30°C. Under the same conditions, dihydrolipoamide dehydrogenase from porcine heart (Sigma) displayed very high activity with NADH (35 U/mg) but no significant activity with NADPH ($<$0.3 U/mg). Dihydrolipoamide dehydrogenase did not display significant STH activity ($<$0.1 U/mg). Lack of dihydrolipoamide dehydrogenase activity is consistent with earlier reports on STH (5, 7).

In contrast to the flavoprotein disulfide oxidoreductases (7), both the *E. coli* and *P. fluorescens* STHs have a threonine at the position of one of the redox-active cysteines characteristic of this family (amino acids 50 and 49, respectively). The cysteine residue missing in the STH sequences is directly involved in the electron transfer between the nonnicotinamide substrate and the FAD in dihydrolipoamide dehydrogenase, glutathione reductase, and mercuric reductase. The conservation of the threonine residue at this position in STH suggests that this residue might be of importance in the STH reaction.
STH sequences were found to be most similar to an unknown dehydrogenase sequence of *Mycobacterium tuberculosis*, showing 41% identity and 61% similarity to the *E. coli* STH. Interestingly, the *M. tuberculosis* sequence also possesses a threonine at the same position as the STHs.

To the best of our knowledge, the finding of an STH in *E. coli* makes this organism the first one reported to possess both a soluble and a membrane-bound transhydrogenase. The existence of two types of transhydrogenases in *E. coli* raises interesting questions about the relative functions of these two enzymes. It is very interesting that the 3' end of *udhA* has a 12-nucleotide overlap with the 3' end of the *oxyR* gene (10). Overlapping genes often have important regulatory implications, and this unusual overlap suggests that the two genes are possibly not expressed under the same conditions.

The *oxyR* gene encodes the transcription factor OxyR, which regulates the expression of several antioxidant genes (e.g., those for catalase hydroperoxidase I and glutathione reductase) in *E. coli*.
sponse to hydrogen peroxide (2, 3). The expression of *oxyR* is maximal in the exponential phase of aerobic growth, when cells are most likely to encounter oxidative stress (9). It has been demonstrated that it is the OxyR protein itself which is sensitive to hydrogen peroxide, activating the protein through the reversible formation of a disulfide bond (3, 28). The oxidized OxyR binds to promoter elements of the genes it regulates, resulting in the onset of their expression, and the protein also represses its own synthesis (3, 19). Hoek and Rydstrom proposed that the mitochondrial transhydrogenase is particularly repressive to hydrogen peroxide, activating the protein through the demonstration that it is the OxyR protein itself which is sensitive to hydrogen peroxide-inducible genes in *Escherichia coli* transhydrogenases, *Salmonella typhimurium* and *Pseudomonas fluorescens* and *Pseudomonas aeruginosa* transhydrogenase. We thank S. J. Rossier and A. Basran for valuable discussions. This work was funded in part by a grant from the BBSRC. B.B. was supported by a Ph.D. fellowship from the Norwegian Research Council (grant 115555/410).

REFERENCES