Directed Synthesis of \{Mn18Cu6\} Heterometallic Complexes

Citation for published version:

Digital Object Identifier (DOI):
10.1002/anie.201208781

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Angewandte Chemie International Edition

Publisher Rights Statement:
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an Open Access article, re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The development of new synthetic strategies to assemble high-nuclearity transition metal complexes is a key target in modern coordination chemistry. One of the driving forces for this is their fascinating magnetic properties for example, single-molecule magnets or magnetic refrigerants and molecules with large spin ground states or large anisotropy barriers. The use of two, or more, different metal ions to assemble these clusters is an attractive synthetic target and controlling the bottom-up assembly of large heterometallic molecules is a considerable challenge. However, the potential rewards are significant, as there is a real possibility of control/design over the individual magnetic parameters that contribute to the overall molecular properties. Furthermore, new functionality can be added, such as the combination of magnetic and optical properties, or the production of catalysts or catalyst precursors with high activity and/or selectivity.

Previously, polydentate ligands with specific binding sites/donor atoms linear linkers such as cyanide or rigid structure-directing ligands have been used to prepare heterometallic complexes. Herein, we describe a new step-by-step approach to synthesize large 3d–3d heterometallic oxo-bridged clusters. Firstly, we use a preformed CuII complex, which contains multiple, latent hydroxy binding sites, to target the trapping and encapsulation of an inner metal-oxo cluster. Secondly, the choice of CuII as the central ion increases the flexibility further, due to its range of typical coordination environments from [4] to [4+2]. We report two compounds that contain a striking “core-shell” [Mn3Cu6] complex as either a hexa- or dication, where the CuII precursors encapsulate a hexacapped cuboctahedral manganese oxide [MnIII3MnII6O14] nanocluster.

The CuII center is enclosed using the bis-tris propane ligand [2,2’-(propane-1,3-diylidimino)bis[2-(hydroxymethyl)-propane-1,3-diol] (H6L, Scheme 1) forming the precursor complex [Cu(H6L)Cl]Cl·1.25H2O (1·1.25H2O) (see Supporting Information, Figure S1) in almost quantitative yield (see Experimental). This is then redissolved and utilized in a second reaction to generate the heterometallic complexes: addition of base to a solution of 1, followed by addition of MnCl2·4H2O leads to the formation of [Mn6Cu6O14(H6L)]Cl4·H2O (2·H2O) using NMe4OH/CH3OH or [Mn6Cu6O14(H6L)Cl4]Cl·10H2O·6CH3OH (3·10H2O·6CH3OH) using NEt4/MeOH. Both compounds can be prepared reproducibly, albeit in low yields, which is not uncommon in the area of high-nuclearity complexes. We have been unable to obtain these complexes using a range of one-pot reactions and preformation of the CuII complex appears to be essential.

The structure of the cationic cluster in 2 is based upon a [MnIII12MnII14O4] core, encapsulated by six [Cu(H6L)2]+ groups. Oxidation states have been confirmed by bond-valence sum (BVS) calculations and by consideration of charge balance/coordination environments. The twelve MnII and fourteen O2− anions, form a hollow cube (ca. 3.8 Å O–O edge) (Figure 1a). The MnII cations describe a cuboctahedron, capped on each square face by a MnII center, which resides off-center, above one of the smaller constituent [MnIII3MnII12] triangular faces (Figure 1c). The CuII ions describe a further octahedron, twisted with respect to the [MnIII12] octahedron, giving a remarkable level of self-assembly: polyhedral shells of expanding size describing archimedian [MnIII12] < platonic [MnIII12] < platonic [CuII12] solids (Figure 2).

The outer (final) coordination site of each MnII center is occupied by either a terminal water [Mn(1), Mn(3) and symmetry equivalent (s.e.)] or chloride ligand [Mn(2) and s.e.] (Figure 1b). Each H6L+ ligand displays the same bonding...
mode $\eta^1\eta^1\eta^1\eta^1\eta^1\eta^1\mu_6$ (Figure 3) and each CuII center is bridged to a MnII and two MnIII centers via two μ_3 ligand alkoxide arms (Figures 1c and 3). The CuII centers are best described as distorted $[4+1]$ coordinate, with the apical bond (ca. 2.6 Å) to either a core oxide anion (for Cu(1), Cu(3)) or an (outer) water ligand (for Cu(2)). Hence, four $[\text{CuN}_2\text{O}_2\text{O}_2\text{O}_3\text{O}_3\text{O}_3]$ pyramids point towards the core and two point away (Figure 4) and the coordinative flexibility of the CuII center (i.e. the direction of the CuII axial bonds) modulates the shape of the [Mn$_{12}$Cu$_6$] complex. For Cu(1) and Cu(3) there is an additional (outer) weak interaction with a lattice chloride anion [2.9808(1), 2.959(3) Å] and for Cu(2) an additional (inner) weak interaction with a cube corner oxide anion [O(6), 2.986(3) Å] (Figure 1c).

Compound 3 contains a similar [Mn$_{12}$Cu$_6$] complex, as a dication, where the core structure is largely the same as for compound 2 (Figure S2 and Tables S5 and S6). However, in this case, each MnII center is equivalent and has a terminal chloride ligand (cf. either Cl$^-$ or H$_2$O in 2) (Figure 5). If we describe each CuII center as $[4+1]$ as in 2, then each apical ligand (ca. 2.6 Å) bonds to a core oxide anion (cf. two of these were to an [outer] water ligand in 2, that is, pointing away

Figure 1. POV-Ray depictions of a) the [Mn$^{III}_{12}$O$_{14}$] core of 2, b) expansion to include the MnII octahedron encapsulating the core, c) the overall heterometallic core of 2. MnIII, purple; MnII, pink; CuII, bronze; Cl, green; O, red (oxide = capped stick, alkoxide = ball and stick); N, blue (C and H atoms omitted for clarity).

Figure 2. Expanding polyhedral shells $\{\text{Mn}^{III}_{12}\} < \{\text{Mn}^{II}_{6}\} < \{\text{Cu}^{II}_{6}\}$ in 2 (colors as previously described).

Figure 3. H$_2$L$^{4+}$ ligand binding mode in 2; the apical bond of Cu2 is pointing outwards from the core, to a H$_2$O ligand. Colors are as previously described, plus C, gray (H atoms not shown).

Figure 4. Differing coordination environments of the CuII cations; yellow pyramids indicate CuII centers where the apical bond points away from the core, green pyramids have the apical CuII bond pointing to the core. Red cube represents the core MnIII-oxide cube. Cu1a = Cu1[1.5–x, 0.5–y, 1–z].
Further high-nuclearity Mn/Cu complexes include: \([\text{Mn}^{II}\text{Cu}^{II}]\) and \([\text{Mn}^{III}\text{Cu}^{II}]\)\cite{11} or \([\text{Mn}^{III}\text{Mn}^{IV}\text{Cu}^{II}]\)\cite{10}. However, none of these one-pot reactions result in either similar metal ion topologies or oxidation levels to those found in 2 and 3. Interestingly, the \([\text{Mn}^{III}\text{Cu}^{II}]\) core structure of the \([\text{Mn}^{II}\text{Cu}^{II}]\) complexes is related to the smaller Mn-oxo clusters, \([\text{Mn}^{III}\text{Mn}^{IV}\text{Mn}^{II}\text{O}(\text{OE})_{12}](\text{O}_{2}\text{CPh})_{12}]\)\cite{17} and \([\text{Mn}^{II}\text{Mn}^{III}\text{Mn}^{II}\text{O}(\mu_{3}\text{O})_{4}(\mu_{2}\text{Cl})_{8}(\text{Bu-PO}_{3})_{8}]\)\cite{18} where the central position is occupied by a Mn\(^{IV}\) or a Mn\(^{II}\) cation, respectively (cf. empty in 2 and 3). Hence, our approach may provide a more general route to trap and build upon stable metal-oxo core architectures: here trapping a \([\text{Mn}^{III}\text{Cu}^{II}]\) core and adding \([\text{Mn}^{III}]\) and \([\text{Cu}^{II}]\) shells.

Structurally closest to 2 and 3 is perhaps the polyoxometalate anion \([\text{Ti}^{IV}\text{Nb}_{6}\text{O}_{44}]^{2-}\), which also has an empty central cavity, in which Ti\(^{IV}\) and Nb\(^{V}\) take the place of Mn\(^{III}\) and Mn\(^{II}\), respectively\cite{19}. Comparisons can also be drawn with Pd\(^{n}\) clusters: \([\text{Pd}_{23}\text{(CO)}_{20}(\text{PEt})_{10}]\) consists of a centered cuboctahedral \([\text{Pd}_{23}]\) core, with square faces capped by Pd atoms in the sites occupied by the six Mn\(^{II}\) in \([\text{Mn}_{2}\text{Cu}_{6}]\). The resulting \([\text{Pd}_{23}]\) giant octahedron is capped on four of its eight faces by additional Pd atoms, in positions close to those occupied by Cu\(^{II}\) in 2 and 3.

The core of 2 is observed by ESI-MS (Figure S5, Table S7). All labile aquo ligands are lost and ion-pairs are observed for \([\text{Cu}^{II}\text{Mn}^{II}\text{Mn}^{III}\text{H}_{2}\text{L}_{2}\text{O}_{12}\text{Cl}_{3}]^{-}\) (m/z 1146.7) and \([\text{Cu}^{II}\text{Mn}^{II}\text{Mn}^{III}\text{H}_{2}\text{L}_{2}\text{O}_{12}\text{Cl}_{3}][\text{Cl}]^{2-}\) (m/z 1737.5) and some fragmentation of the parent ion is observed, \([\text{Cu}^{II}\text{H}_{2}\text{L}_{2}]^{+}\) (m/z 344.1). The solution stability provides further potential for using these reaction systems to probe heterometallic cluster assembly.

The bridging in 2 is complex and each metal cation is bridged to between three and eight others, via single oxygen bridges. Bridging angles range from 88.28–107.83°. The overall picture is similar for 3, except that the higher symmetry of the molecule results in a minimum of four bridging connections to neighboring metal ions. The majority of the bridging angles are large, and as a result, we would expect antiferromagnetic coupling to dominate; which proves to be the case (Figure S6). Magnetization vs. field data (Figure S7) suggests a large number of excited states with similar energies, and a poorly defined ground state. AC measurements do not show any evidence of frequency dependence; this is unsurprising as the Jahn–Teller axes of the Mn\(^{II}\) centers are nearly perpendicular, leaving little net magnetic anisotropy.

Using our step-by-step approach, starting with a pre-formed Cu\(^{II}\) complex, we can trap and encapsulate manganese oxide nano-clusters. Reactions changing the anion (Cl\(^{-}\)), precursor (Cu\(^{II}\)) and core metal ion (Mn) are all underway, in order to assemble new heterometallic clusters and to explore the self-assembly of high-nuclearity complexes.

Experimental Section

All reagents and solvents were obtained from commercial suppliers and used without further purification.

Synthesis of 1: H\(_{2}\)L (5.70 g, 20.2 mmol) and CuCl\(_{2}\)-2H\(_{2}\)O (5.28 g, 31.0 mmol) were combined in ethanol (120 mL) and heated to 60°C.
A dark green solution formed, followed by precipitation of a pale blue solid (15 mins). The mixture was heated for 5 h. After cooling, the blue precipitate [Cu(H2L)Cl]Cl·1.25H2O (1.25 mmol) was collected by filtration and washed with ethanol. Yield 8.63 g; 96 %. IR: \(\nu \approx 3140, 3018, 2943, 1470, 1428, 1307, 1263, 1114, 1077, 1064, 1011, 761 \text{ cm}^{-1}\). Elemental analysis (C, H, N, Cl, Cu, H2O) [%], found: C 30.01, H 6.50, N 6.38; calcld: C 30.07, H 6.54, N 6.38. Single crystals suitable for X-ray study were obtained by recrystallization from ethanol yielding 1.05 mmol (see Supporting Information).

Synthesis of 2: 1.25 mmol of (109 mg, 0.263 mmol) was dissolved in hot ethanol (60 mL at 60 °C), Na2CO3·5H2O (166 mg, 0.842 mmol) was added, and immediately dissolved, resulting in a clear royal blue solution, which was heated for 30 min. MnCl2·4H2O (166 mg, 0.837 mmol) was added, resulting in an immediate color change to dark gray, followed by formation of a precipitate. The mixture was heated for 4 h, and the precipitate (108 mg) was removed by filtration. Black crystals of [Mn18Cu6O14(H2L)6Cl2(H2O)6]Cl6·H2O formed in the filtrate over 1 month (ca. 6 mg, 4%) (see Supporting Information). The filtrate was evaporated to dryness, and the remaining black powder was collected free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request cif.

Received: November 1, 2012
Revised: December 11, 2012
Published online: January 10, 2013

Keywords: copper - heterometallic complexes - magnetic properties - manganese - polynuclear clusters

