Global burden of atherosclerotic cardiovascular disease in people with hepatitis C virus infection: a systematic review, meta-analysis, and modelling study

Summary
Background More than 70 million people worldwide are estimated to have hepatitis C virus (HCV) infection. Emerging evidence indicates an association between HCV and atherosclerotic cardiovascular disease. We aimed to determine the association between HCV and cardiovascular disease, and estimate the national, regional, and global burden of cardiovascular disease attributable to HCV.

Methods For this systematic review and meta-analysis, we searched MEDLINE, Embase, Ovid Global Health, and Web of Science databases from inception to May 9, 2018, without language restrictions, for longitudinal studies that evaluated the risk ratio (RR) of cardiovascular disease in people with HCV compared with those without HCV. Two investigators independently reviewed and extracted data from published reports. The main outcome was cardiovascular disease, defined as hospital admission with, or mortality from, acute myocardial infarction or stroke. We calculated the pooled RR of cardiovascular disease associated with HCV using a random-effects model. Additionally, we calculated the population attributable fraction and disability-adjusted life-years (DALYs) from HCV-associated cardiovascular disease at the national, regional, and global level. We also used age-stratified and sex-stratified HCV prevalence estimates and cardiovascular DALYs for 100 countries to estimate country-level burden associated with HCV. This study is registered with PROSPERO, number CRD42018091857.

Findings Our search identified 16639 records, of which 36 studies were included for analysis, including 341739 people with HCV. The pooled RR for cardiovascular disease was 1·28 (95% CI 1·18–1·39). Globally, 1·5 million (95% CI 0·9–2·1) DALYs per year were lost due to HCV-associated cardiovascular disease. Low-income and middle-income countries had the highest disease burden with south Asian, eastern European, north African, and Middle Eastern regions accounting for two-thirds of all HCV-associated cardiovascular DALYs.

Interpretation HCV infection is associated with an increased risk of cardiovascular disease. The global burden of cardiovascular disease associated with HCV infection was responsible for 1·5 million DALYs, with the highest burden in low-income and middle-income countries.

Funding British Heart Foundation and Wellcome Trust.

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Globally, more than 70 million people are estimated to have hepatitis C virus (HCV) infection.1 Prevalence of HCV is particularly high in the eastern Mediterranean region and Europe, where approximately 2·3% and 1·5% of the general population have HCV infection, respectively.1 In the USA, the estimated prevalence of past or current HCV infection is 1·4%, affecting 4·6 million people, of whom at least 3·5 million have active HCV infection (1% of the general population).1 The number of new incident cases of HCV infections in the USA has been increasing since 2010.1

After acute HCV infection, most patients develop chronic infection.2 Usually, these patients remain asymptomatic, with less than a third progressing to liver cirrhosis in the subsequent 20–30 years.4 Although mortality due to cirrhosis and hepatocellular carcinoma are well recognised long-term complications of chronic HCV infection,5 patients with chronic infection are also at increased risk of non-liver-related mortality, including cancer and circulatory death.7

Atherosclerotic cardiovascular disease is the most common cause of death worldwide and the burden of disease is projected to rise substantially over the next few decades, particularly in low-income and middle-income countries (LMICs).4 HCV transmission is also projected to rise considerably in LMICs due to unsafe health-care practices and injection drug use.8–10 Published data11–13 suggest that the long period of chronic HCV infection might lead to the development of atherosclerotic
cardiovascular disease because of derangements in metabolic pathways and chronic inflammation. However, the direction and strength of the association between HCV infection and cardiovascular disease remains uncertain.15–19

Our study aimed to determine the association between HCV infection and the risk of cardiovascular disease to establish the global burden of cardiovascular disease attributable to HCV.

Methods

Search strategy and selection criteria

We searched MEDLINE, EMBASE, Ovid Global Health, and Web of Science from database inception to May 9, 2018, for original peer-reviewed articles using the search terms “myocardial infarction”, “stroke”, “cerebrovascular disease”, “cardiovascular disease”, and “hepatitis C”. We found no studies that assessed the risk of cardiovascular disease or calculated the burden from all major atherosclerotic cardiovascular events associated with hepatitis C. Previous meta-analyses have evaluated the association between HCV infection and stroke and surrogate markers of subclinical atherosclerotic disease.

Added value of this study

To our knowledge, our study is the first meta-analysis to investigate the risk of major atherosclerotic cardiovascular disease in people with HCV infection and to estimate the burden of atherosclerotic cardiovascular disease attributed to HCV infection at the global, regional, and national level.

Implication of all the available evidence

Our findings show that people with HCV infection have a higher risk of cardiovascular disease than those without. The global burden of cardiovascular disease attributable to HCV accounted for a substantial number of disability-adjusted life-years in 2015, and the majority of the burden was borne by low-income and middle-income countries. These findings highlight the importance of public health strategies to eradicate HCV infection to reduce the burden of not only hepatic, but extrahepatic complications (such as cardiovascular disease), especially in regions with high HCV prevalence.

For studies that stratified the study population according to the presence of HCV RNA viraemia, we used the RR estimates pertaining to individuals who were HCV RNA positive. We defined a cardiovascular event as hospital admission with, or mortality from, acute myocardial infarction or stroke. Studies that evaluated a composite of acute cardiovascular events that included myocardial infarction or stroke but were not exclusive to these conditions were also included. For studies that stratified stroke events into haemorrhagic and ischaemic strokes, we included only ischaemic strokes in the analysis because haemorrhagic strokes have distinct pathophysiological mechanisms that are unrelated to atherosclerosis.20

Data analysis

We extracted RR estimates comparing cardiovascular events in people with HCV versus those without HCV from published reports using a standardised data extraction sheet. We estimated pooled RRs with 95% CIs. Since this outcome was relatively uncommon, we pooled studies that reported odds ratio and RR. We also assumed independence between risk estimates for different endpoints reported within studies, consistent with our previous analysis.22 We did a subgroup analysis stratified by outcome, HIV coinfection, publication year, risk of bias, definition of outcome event, and geographical location.

Two independent investigators (KKL and DS) assessed individual studies for risk of bias, using the degree of adjustment for confounders as the primary domain, and any disagreements were adjudicated by a third investigator (ASVS). We contacted authors for additional data or clarification if required. This study was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (appendix pp 4, 5).26 The study protocol was available online.
those that did not adjust for both age or sex were classified as high risk of bias. We did the subgroup analysis stratified by risk of bias.

We estimated the burden of cardiovascular disease attributable to HCV at the national, regional, and global level. We obtained 2015 global prevalence estimates of viraemic HCV (HCV RNA positive) for 100 countries from the Polaris Observatory, with estimates stratified by Global Burden of Disease region.23 These 100 countries represent more than 85% of the global population and where more than 89% of all HCV viral infections (HCV RNA positive) are estimated to occur worldwide.24 The national prevalence estimates obtained were age-specific and sex-specific. We obtained age-specific and sex-specific disability-adjusted life-year (DALY) estimates for cardiovascular disease (DALYs due to ischaemic heart disease and stroke) for all adults aged older than 20 years in 2015 from the Institute of Health Metrics and Evaluation.24 The extraction databases from the systematic review and the data from the Polaris Observatory and Institute of Health Metrics and Evaluation used to derive the pooled estimates and the burden estimates alongside the R code script are available online.

We estimated the population attributable risk fraction at the national, regional, and global level using the pooled RR for cardiovascular disease in patients with hepatitis C and the prevalence estimates of HCV. The population attributable fraction (PAF) for cardiovascular disease attributable to HCV was calculated as described previously:25,26

\[
\text{Population attributable fraction} = \frac{\text{Prevalence} \times (\text{RR} - 1)}{1 + (\text{Prevalence} \times \text{RR})}
\]

We then used national, regional, and global level attributable fractions to calculate the burden as previously described (appendix pp 6–10):

\[
\text{DALYs attributable to HCV} = \text{Cardiovascular DALYs} \times \text{PAF}
\]

We provided estimates of PAF and burden in 5-year age groups and presented data graphically using a linear model to interpolate the intervening years. We further provided burden estimates by income of nation stratified by high-income versus LMICs. National income status was defined according to the 2018 World Bank classification.27

We anticipated heterogeneity in the RRs across studies because of differences in study design, patient population, geographical location, statistical methods, and adjustment for confounders. We pooled RRs using a random effects model to account for within and between study heterogeneity. We assessed heterogeneity in the pooled meta-estimate of the RR using the \(I^2 \) statistic. We assessed publication bias using visual inspection of funnel plots of the RR estimates and using Egger’s regression test for asymmetry.28 We corrected for asymmetry using Duval and Tweedie’s trim and fill method.29 Full statistical methods are in the appendix (pp 6–10). All analyses were done using R (version 3.4.1). A two-sided \(p \) value of less than 0·05 was considered to indicate statistical significance.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

We identified 16650 articles, of which 2270 were duplicates (figure 1). 343 full-text articles were assessed for eligibility. After full-text review, 36 studies,7,30–64 which provided 47 estimates, were included in our analyses (table). These studies included 341739 people with HCV. 31 (86%) of 36 studies were done in North America, Europe, and east Asia. Only two studies32,33 originated from LMICs. Most studies used the International Classification of Diseases coding or physician diagnosis to define the outcome events.

24 studies defined HCV infection as anti-HCV antibody seropositivity, nine studies used detectable HCV RNA levels, and three studies did not explicitly define their approach (table). Overall, the meta-analysis
<table>
<thead>
<tr>
<th>Cohort name</th>
<th>Country or region</th>
<th>Study type</th>
<th>Data source</th>
<th>Participants, n</th>
<th>Events, n</th>
<th>Men, n (%)</th>
<th>Mean age at baseline, years</th>
<th>Study period</th>
<th>Hepatitis C virus status</th>
<th>Outcome definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heo et al, 2018<sup>38</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Organ Procurement and Transplant Network</td>
<td>2728</td>
<td>117</td>
<td>1996 (73%)</td>
<td>50 ± 9</td>
<td>2004-14</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Alvaro-Meca et al, 2017<sup>34</sup></td>
<td>Spain</td>
<td>Case-control study</td>
<td>Spanish Minimum Basic Data Set</td>
<td>4091</td>
<td>369</td>
<td>3348 (79%)</td>
<td>45 ± 9</td>
<td>1997-2013</td>
<td>Seropositive</td>
<td>Stroke<sup>*</sup></td>
</tr>
<tr>
<td>Butt et al, 2017<sup>32</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Veterans Health Administration</td>
<td>171 726</td>
<td>5949</td>
<td>171 726 (100%)</td>
<td>54 ± 9</td>
<td>2001-15</td>
<td>Viraemic</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Chew et al, 2017<sup>31</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Veterans Health Administration</td>
<td>168 256</td>
<td>11 753</td>
<td>168 256 (100%)</td>
<td>55 ± 9</td>
<td>2001-14</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Goodkin et al, 2017<sup>29</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Hospital records</td>
<td>76 689</td>
<td>6790</td>
<td>45 016 (59%)</td>
<td>62 ± 5</td>
<td>1996-2015</td>
<td>Seropositive</td>
<td>Cardiovascular disease, myocardial infarction, stroke</td>
</tr>
<tr>
<td>Kovari et al, 2017<sup>30</sup></td>
<td>Switzerland</td>
<td>Cohort study</td>
<td>Swiss HIV Cohort Study</td>
<td>5 006</td>
<td>143</td>
<td>3624 (72%)</td>
<td>50 ± 9</td>
<td>1994-2014</td>
<td>Seropositive</td>
<td>Cardiovascular disease*</td>
</tr>
<tr>
<td>Piazza et al, 2016<sup>36</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Hospital records</td>
<td>143</td>
<td>19</td>
<td>101 (71%)</td>
<td>55 ± 9</td>
<td>2005-10</td>
<td>Undefined</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Fernandez-Montero et al, 2015<sup>35</sup></td>
<td>Spain</td>
<td>Cohort study</td>
<td>Hospital register</td>
<td>1 066</td>
<td>29</td>
<td>842 (79%)</td>
<td>42 ± 7</td>
<td>2004-15</td>
<td>Viraemic</td>
<td>Cardiovascular disease†</td>
</tr>
<tr>
<td>Tsi et al, 2015<sup>15</sup></td>
<td>Taiwan</td>
<td>Study</td>
<td>National Health Insurance Research Database</td>
<td>69 915</td>
<td>848</td>
<td>35 916 (51%)</td>
<td>54 ± 7</td>
<td>1998-2008</td>
<td>Undefined</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Vajdic et al, 2015<sup>16</sup></td>
<td>Australia</td>
<td>Cohort study</td>
<td>Pharmaceutical Drugs of Addiction System</td>
<td>29 571</td>
<td>122</td>
<td>20 403 (69%)</td>
<td>26 ± 9</td>
<td>1993-2007</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Enger et al, 2014<sup>17</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Optum Research Database (insurance plans)</td>
<td>90 931</td>
<td>534</td>
<td>56 740 (62%)</td>
<td>49 ± 9</td>
<td>2000-06</td>
<td>Seropositive</td>
<td>Myocardial infarction, stroke</td>
</tr>
<tr>
<td>Gillis et al, 2014<sup>18</sup></td>
<td>Canada</td>
<td>Cohort study</td>
<td>Clinic register</td>
<td>41 521</td>
<td>157</td>
<td>34 931 (84%)</td>
<td>36 ± 9</td>
<td>1995-2011</td>
<td>Seropositive</td>
<td>Cardiovascular disease†</td>
</tr>
<tr>
<td>Hsu et al, 2014<sup>19</sup></td>
<td>Taiwan</td>
<td>Cohort study</td>
<td>National Health Insurance Research Database</td>
<td>70 55</td>
<td>429</td>
<td>45 999 (65%)</td>
<td>54 ± 9</td>
<td>2003-11</td>
<td>Seropositive</td>
<td>Myocardial infarction, stroke</td>
</tr>
<tr>
<td>Pothineni et al, 2014<sup>20</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Enterprise Data Warehouse at University of Arkansas for Medical Sciences</td>
<td>23 050</td>
<td>951</td>
<td>12 611 (55%)</td>
<td>50 ± 9</td>
<td>2001-13</td>
<td>Viraemic</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Tripathi et al, 2014<sup>21</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Medicaid</td>
<td>13 632</td>
<td>1284</td>
<td>7 661 (56%)</td>
<td>38 ± 9</td>
<td>1994-2011</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Womack et al, 2014<sup>22</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>Veterans Health Administration, Medicare, Medicaid, and Quality Enhancement Research Initiative in ischaemic heart disease</td>
<td>2187</td>
<td>86</td>
<td>0 (100%)</td>
<td>43 ± 6</td>
<td>2003-09</td>
<td>Seropositive</td>
<td>Cardiovascular disease*</td>
</tr>
<tr>
<td>Adinolfi et al, 2015<sup>23</sup></td>
<td>Italy</td>
<td>Case-control study</td>
<td>Hospital records</td>
<td>820</td>
<td>123</td>
<td>524 (64%)</td>
<td>76 ± 9</td>
<td>2010-12</td>
<td>Seropositive</td>
<td>Stroke</td>
</tr>
<tr>
<td>Hsu et al, 2013<sup>24</sup></td>
<td>Taiwan</td>
<td>Cohort study</td>
<td>Longitudinal Health Insurance Database 2000</td>
<td>15 565</td>
<td>NR</td>
<td>80/78 (52%)</td>
<td>Not reported</td>
<td>2004-07</td>
<td>Viraemic</td>
<td>Stroke</td>
</tr>
<tr>
<td>Yousoussi et al, 2013<sup>25</sup></td>
<td>USA</td>
<td>Cohort study</td>
<td>National Health and Nutrition Examination Survey</td>
<td>8 985</td>
<td>NR</td>
<td>417/8 (46%)</td>
<td>Not reported</td>
<td>1988-2006</td>
<td>Viraemic</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Campbell et al, 2012<sup>26</sup></td>
<td>UK</td>
<td>Cohort study</td>
<td>Hospital records</td>
<td>4 068</td>
<td>32</td>
<td>4 068 (100%)</td>
<td>36 ± 5</td>
<td>2004-09</td>
<td>Seropositive</td>
<td>Cardiovascular disease*</td>
</tr>
<tr>
<td>Carrieri et al, 2012<sup>27</sup></td>
<td>France</td>
<td>Cohort study</td>
<td>Medical questionnaires</td>
<td>1 154</td>
<td>49</td>
<td>900 (78%)</td>
<td>37 ± 7</td>
<td>1997-2010</td>
<td>Seropositive</td>
<td>Cardiovascular disease*</td>
</tr>
</tbody>
</table>
showed that individuals with HCV had a higher risk of cardiovascular disease than individuals without HCV (pooled RR 1·28, 95% CI 1·18–1·39; figure 2). When stratified by outcome the risk ratio was 1·13 (95% CI 1·00–1·28) for myocardial infarction, 1·38 (1·19–1·60) for stroke, and 1·39 (1·24–1·55) for cardiovascular mortality (appendix p 11). Individuals with HCV and HIV co-infection had a higher risk of cardiovascular disease than those with HIV mono-infection (RR 1·20, 1·09–1·32). Post-hoc analyses showed that the RR estimates from studies published before 2014, which was the median publication year, were marginally

<table>
<thead>
<tr>
<th>Cohort name</th>
<th>Country or region</th>
<th>Study type</th>
<th>Data source</th>
<th>Participants, n</th>
<th>Events, n</th>
<th>Men, n (%)</th>
<th>Mean age at baseline, years</th>
<th>Study period</th>
<th>Hepatitis C virus status</th>
<th>Outcome definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forde et al, 2012</td>
<td>THIN</td>
<td>UK Cohort study</td>
<td>General practice medical records</td>
<td>76 477</td>
<td>264</td>
<td>46 727 (61%)</td>
<td>38.6</td>
<td>1996–2008</td>
<td>Undefined</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Lee et al, 2012</td>
<td>REVEAL–HCV</td>
<td>Taiwan Cohort study</td>
<td>Questionnaires and interviews</td>
<td>19 636</td>
<td>477</td>
<td>9 523 (48%)</td>
<td>47.6</td>
<td>1991–2008</td>
<td>Viraemic</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Liu et al, 2012</td>
<td>NHIRD</td>
<td>Taiwan Cohort study</td>
<td>National Health Insurance Research Database</td>
<td>20470</td>
<td>1981</td>
<td>10 235 (50%)</td>
<td>52</td>
<td>2002–08</td>
<td>Viraemic</td>
<td>Stroke</td>
</tr>
<tr>
<td>Freiberg et al, 2011</td>
<td>Veterans Aging Cohort Study—virtual cohort</td>
<td>USA Cohort study</td>
<td>Veterans Aging Cohort Study and Large Health Study of Veteran Enrollees</td>
<td>8579</td>
<td>194</td>
<td>857 (100%)</td>
<td>48.1</td>
<td>2000–07</td>
<td>Seropositive</td>
<td>Cardiovascular disease*</td>
</tr>
<tr>
<td>Kristiansen et al, 2011</td>
<td>Norway</td>
<td>Cohort study</td>
<td>Department of Microbiology, University Hospital of North Norway</td>
<td>1010</td>
<td>5</td>
<td>688 (68%)</td>
<td>40</td>
<td>1990–2000</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Ohshima et al, 2009</td>
<td>KAREN</td>
<td>Japan Cohort study</td>
<td>KAREN cohort</td>
<td>1077</td>
<td>194</td>
<td>682 (63%)</td>
<td>60.4</td>
<td>2003–08</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Bedimo et al, 2010</td>
<td>HIV Clinical Care Registry</td>
<td>USA Cohort study</td>
<td>Veterans Registry</td>
<td>19 424</td>
<td>1146</td>
<td>18 938 (97%)</td>
<td>46.2</td>
<td>1984–2004</td>
<td>Viraemic</td>
<td>Myocardial infection, stroke*</td>
</tr>
<tr>
<td>Bellosi et al, 2010</td>
<td>LATINA</td>
<td>Brazil, Mexico, LATINA</td>
<td>LATINA cohort</td>
<td>160</td>
<td>40</td>
<td>Not reported</td>
<td>Not reported</td>
<td>1997–2007</td>
<td>Seropositive</td>
<td>Cardiovascular disease*</td>
</tr>
<tr>
<td>DAD Study Group, 2010</td>
<td>DAD study</td>
<td>Europe, USA, Australia</td>
<td>DAD cohort</td>
<td>21 815</td>
<td>517</td>
<td>16 143 (74%)</td>
<td>38</td>
<td>1999–2007</td>
<td>Seropositive</td>
<td>Myocardial infection* ANA MONICA Project</td>
</tr>
<tr>
<td>Lee et al, 2010</td>
<td>–</td>
<td>Taiwan Cohort study</td>
<td>National Death Certification Registry</td>
<td>23 665</td>
<td>22</td>
<td>11 879 (50%)</td>
<td>47.1</td>
<td>1991–92</td>
<td>Viraemic</td>
<td>Stroke</td>
</tr>
<tr>
<td>Tsu et al, 2009</td>
<td>The Heart and Soul study</td>
<td>USA Cohort study</td>
<td>Veterans Administration electronic records</td>
<td>981</td>
<td>151</td>
<td>80 (82%)</td>
<td>66.3</td>
<td>2000–06</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Guiltnan et al, 2008</td>
<td>–</td>
<td>USA Cohort study</td>
<td>Blood Systems</td>
<td>20 518</td>
<td>88</td>
<td>13 254 (65%)</td>
<td>Not reported</td>
<td>1991–2002</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Kalantar-Zadeh et al, 2007</td>
<td>–</td>
<td>USA Cohort study</td>
<td>DaVita outpatient dialysis database</td>
<td>13 664</td>
<td>NR</td>
<td>7 433 (54%)</td>
<td>60.1</td>
<td>2001–04</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Arrari et al, 2006</td>
<td>–</td>
<td>USA Case-control study</td>
<td>Clinical registry</td>
<td>75 834</td>
<td>292</td>
<td>47 775 (53%)</td>
<td>40.2</td>
<td>1991–2000</td>
<td>Seropositive</td>
<td>Myocardial infection</td>
</tr>
<tr>
<td>Amin et al, 2006</td>
<td>–</td>
<td>Australia Cohort study</td>
<td>New South Wales Health Department Notifiable Diseases Database</td>
<td>582</td>
<td>450</td>
<td>582 (100%)</td>
<td>34</td>
<td>1990–2002</td>
<td>Seropositive</td>
<td>Cardiovascular disease</td>
</tr>
</tbody>
</table>

ICD=International Classification of Diseases. ERCHVES=Electronically Retrieved Cohort of Hepatitis C Virus Infected Veterans. DOPPS=Diagnosis Outcomes and Practice Patterns Study. NHIRD=HCV=National Health Insurance Research Database—Hepatitis C Virus. ODDS=Optum Research Database. OCS=Ontario HIV Treatment Network Cohort Study. UAMS=University of Arkansas for Medical Sciences. LHD2000=Longitudinal Health Insurance Database 2000. NR=not reported. NHANES III=National Health and Nutrition Examination Survey III. APPROCO-COPPLITE=Antiprotein Coherence ThoHN=ThoHN=The Health Improvement Network. REVEAL–HCV-Risk Evaluation of Vical Load Elevation and Associated Liver Disease/Cancer—Hepatitis C Virus. DAD=Data Collection on Adverse Events of Anti-HIV Drugs. MONICA=Multinational Monitoring of Trends and Determinants in Cardiovascular Disease. CM=Clinical Modification. “Risk ratio reported for hepatitis C virus and HIV co-infection versus HIV infection only.” Australia, Belgium, Canada, mainland China, France, Germany, Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates, Italy, Japan, New Zealand, Spain, Russia, Sweden, Turkey, the UK, and the USA.

Table: Baseline characteristics of studies included in the meta-analysis.
Figure 2: Forest plots of pooled RRs for cardiovascular disease in people with hepatitis C virus versus people without
Pooled RRs for composite cardiovascular events (A), myocardial infarction (B), and stroke (C). n=number of events. N=number of participants. RR=risk ratio. NR=not reported. df=degrees of freedom. DAD=Data Collection on Adverse Events of Anti-HIV Drugs.
higher than those from studies published after 2014 (1·39 [1·25–1·54] vs 1·22 [1·11–1·34]). Studies that ascertained outcome with physician diagnosis had higher RRs than did those that used International Classification of Diseases codes (1·68 [1·24–2·29] vs 1·31 [1·20–1·42]). Nine studies in patients with HCV viraemia had marginally higher RRs than the overall pooled RR (1·32, 1·15–1·51). Nearly two-thirds of studies originated from the USA or Taiwan (21 [58%] of 36 studies). In the subgroup analysis, studies from these two countries had a similar pooled RR as those from the rest of the world (1·28 [1·16–1·40] vs 1·29 [1·12–1·48] respectively).

There was significant heterogeneity (I²=77·5%) and publication bias in the overall estimate (Egger’s test p=0·003). Using the trim and fill method to correct for funnel plot asymmetry did not change the direction of effect but did attenuate the effect size (appendix p 20). 11 studies were at moderate or high risk of bias (appendix pp 12, 13). Compared with studies with a low risk of bias, those with moderate or high risk of bias had a similar pooled RR (1·30 [95% CI 1·10–1·55] for studies with moderate or high risk of bias vs 1·29 [1·19–1·40] for studies with low risk of bias).

We estimated that in 2015, 1·5 million (95% CI 0·9–2·1) DALYs from cardiovascular disease were attributable to HCV, with marked geographical variation in the estimated burden. LMICs had the highest disease burden, with South Asia, eastern Europe, north Africa, and the Middle East accounting for nearly two-thirds of the global burden of cardiovascular disease attributable to HCV in 2015 (920·7 thousand DALYs; appendix p 14).

Of the 100 countries with available age-specific and sex-specific viraemic HCV prevalence estimates for 2015, the highest burden (ie, cardiovascular DALYs attributable to HCV) was in Ukraine, Mongolia, Gabon, and Egypt (figure 3; appendix pp 15–17). Worldwide, the PAF of cardiovascular disease attributable to HCV was highest in people aged 55–59 years (appendix p 18). DALYs from cardiovascular disease attributable to HCV was highest in people aged 70–74 years (appendix p 18). The burden of cardiovascular disease attributable to HCV was higher in LMICs than in high-income countries (1·4 million [95% CI 0·88–1·95] DALYs vs 0·1 million [95% CI 0·07–0·12] DALYs; figure 4; appendix p 19).
Discussion
In this systematic review and meta-analysis, we assessed the association between HCV and cardiovascular disease and estimated the global, regional, and national burden of cardiovascular disease attributable to HCV. We made several key observations. First, people with HCV have an increased risk of cardiovascular disease compared with those without HCV (RR 1.28). When stratified by type of cardiovascular event, the overall pooled estimate was higher for stroke than for myocardial infarction. Second, our pooled risk estimate was derived from 341739 people with HCV infection included in 36 studies from 51 countries. Only two studies reported findings from populations of LMICs, highlighting the paucity of data from these regions. Third, the most up-to-date annual global burden of cardiovascular disease attributable to HCV was 1.5 million DALYs. Most of this burden was concentrated in the 55–75 year age group, reflecting more premature development of cardiovascular disease in people with HCV. Fourth, considerable geographical variation was identified in the burden of cardiovascular disease attributable to HCV, with the highest burden observed in south Asia, eastern Europe, north Africa, and the Middle East. The majority of the burden was borne by LMICs rather than high-income countries. This observation is likely to reflect both a high prevalence of chronic hepatitis C in these regions and an increasing burden of cardiovascular disease.

Our analysis has several strengths. We included longitudinal studies that evaluated the association between HCV and hospital admissions with, or mortality from, cardiovascular disease. Furthermore, the endpoint of our analysis was major adverse cardiovascular events, which enabled accurate risk estimation and assessment of cardiovascular burden. Previous systematic reviews and meta-analyses, which included cross-sectional studies and studies that used surrogate endpoints that might not be fully reflective of a causal relationship, have reported divergent findings. We also analysed burden using age-specific, sex-specific, and country-specific cardiovascular burden and HCV prevalence estimates, allowing us to provide HCV attributable burden estimates for specific age groups, which could be useful for policy makers. Moreover, our estimates for HCV prevalence obtained from the Polaris Observatory reflect viraemia rather than just seropositivity alone, and the countries for which we had prevalence estimates accounted for over 89% of all chronic HCV infections globally. Our estimates for the PAF and subsequent HCV associated cardiovascular burden are therefore based on a high-risk population with active HCV infection, in whom both long-term hepatic and extrahepatic complications remain common.

This study has a number of limitations. Most studies included in this meta-analysis originated from high-income countries in North America and western Europe, but estimates were applied to all regions. This approach is commonly used in this type of analysis because of paucity of data from LMICs. This highlights an ongoing need for research in these low-resource settings, in which the disease prevalence of HCV and cardiovascular disease is high, to improve the accuracy of the burden estimates in these regions. We also observed significant heterogeneity in our RR estimates. However, the direction of effect was consistent and robust across all subgroup analyses. The observed heterogeneity is likely to reflect the diverse patient population, viraemic status of the study population, differences in health-care systems, access to treatment, and geographical location of the studies pooled in this analysis. Many studies did not fully account for the competing risk of non-cardiovascular mortality, thus some methodological heterogeneity exists. Most people with HCV infection die from non-cardiovascular causes, therefore this is an important competing risk that might distort the exposure-outcome association with cardiovascular disease. People with HIV and HCV co-infection have a higher risk for cardiovascular disease than those with HIV mono-infection. This increased risk highlights the importance of risk stratification in this patient population considering that people with HIV are twice as likely to have cardiovascular events than those without HIV. Although most studies evaluating the RR of cardiovascular disease adjusted for risk factors for cardiovascular disease, a substantial possibility of residual confounding remains. Furthermore, there was substantial publication bias in the literature, which might have influenced the risk estimates. However, there was little attenuation of the RR when analysis was restricted to studies without moderate to high risk of bias or after accounting for publication bias using the trim and fill method. Additionally, we pooled RR estimates of myocardial infarction or stroke to estimate the PAF and combined this with the DALYs for ischaemic heart disease and cerebrovascular disease to estimate the burden of cardiovascular disease attributable to HCV. We were unable to estimate the burden of angina or peripheral artery disease attributable to HCV since these conditions are often diagnosed in the outpatient setting and are less likely to be captured by electronic health record systems. Therefore, it is possible that we have underestimated the cardiovascular burden associated with HCV. However, the 2010 Global Burden of Disease study showed that angina and peripheral artery disease contributed a relatively small proportion of the overall cardiovascular disease burden. The studies included in this meta-analysis are likely to be exposed to a degree of outcome misclassification bias because most studies used routine diagnostic coding to define cardiovascular events rather than clinical adjudication. All of the included studies were observational studies, and thus we are unable to establish causality.

The underlying pathophysiological mechanism for the association between HCV and cardiovascular disease
remains unclear. HCV infection has been associated with conditions such as type 2 diabetes, a well-known cardiovascular risk factor. Evidence has emerged showing direct effects of HCV on the development of atherosclerosis, beyond that attributable to metabolic derangements alone. Chronic HCV infection results in a chronic state of immune stimulation and inflammation evidenced by increased circulating levels of proinflammatory cytokines, such as interleukin 6, tumour necrosis factor-α, C-reactive protein, and fibrinogen, all of which are associated with the development of atherosclerotic cardiovascular disease. Interferon-based antiviral treatments for HCV reduce markers of inflammation, endothelial dysfunction, and diabetes mellitus. Sustained viral response with direct-acting antivirals have also been associated with a lower risk of cardiovascular events. Whether eradication of HCV infection reduces future risk of adverse cardiovascular events should be further explored in randomised controlled trials of direct-acting antivirals to investigate this finding.

The link between HCV and cardiovascular disease has important implications for the formulation of health policies and resource allocation, particularly in regions with limited health-care resources, where chronic HCV infection remains prevalent and cardiovascular disease burden is increasing. Globally, prevalence of HCV is projected to increase substantially, particularly in LMICs, as a result of transmission via unsafe health-care related injections and injection drug use. Consequently, mortality due to hepatic and extrahepatic complications of HCV is likely to increase considerably if efforts to improve early testing and treatment are not implemented. A disproportionate burden of cardiovascular disease is borne by LMICs, where currently more than 80% of the global burden is concentrated. Our estimates suggest that more than 90% of the global cardiovascular burden attributable to HCV occurs in LMICs.

The introduction of direct-acting antiviral therapies with the ability to achieve sustained virological response in more than 90% of treated individuals should be a cause for optimism. These new therapeutic options enable the prevention of both hepatic and extrahepatic complications of HCV infection with a shorter duration of treatment and fewer adverse events than previous generations of antiviral therapies. However, at present, public health programmes and access to health-care services for people with HCV lags behind other comparable infectious diseases, such as HIV or malaria. The provision of direct-acting antiviral therapies in patients with HCV infection remains low on the global scale, with only one in 15 patients currently being treated, the majority of whom reside in high-income countries. To have the greatest impact on HCV morbidity and mortality, the delivery of curative HCV treatment needs to be coupled with efficient health systems to provide chronic care services for patients with both hepatic and extrahepatic complications of HCV. Considering our study findings, investment in greater strategic integration and linkage of viral hepatitis services with other relevant services, including cardiovascular disease prevention, might be a cost-effective method of facilitating the prevention and management of concurrent major health conditions. These innovative approaches to health-care delivery might require further research to evaluate feasibility and efficacy in a real-world clinical setting.

People with HCV have a higher risk of developing cardiovascular disease than those without HCV. HCV accounted for 1·5 million DALYs due to cardiovascular disease worldwide in 2015, with the highest burden in South Asia, eastern Europe, north Africa, and the Middle East. Most of the disease burden is borne by LMICs, where HCV prevalence is projected to rise substantially. Our findings are of public health importance and could inform future research and health-care policies to improve risk stratification and treatment strategies aimed at reducing the combined global burden of HCV and extrahepatic sequelae such as cardiovascular disease.

Contributors
KKL, DS, and ASVS conceived and designed the study. KKL, DS, RB, MA, FS, SoB, and ASVS acquired the data. KKL and ASVS analysed and interpreted the data. KKL and ASVS drafted the initial manuscript. KKL, DS, RB, DEN, JSS, MHC, GSB, CTL, ShB, SK, SaB, HR, PRM, NLM, DAM, and ASVS critically reviewed the manuscript for intellectual content. All authors approved the final version of the report.

Declaration of interests
CTL reports grants from Gilead Sciences, outside the submitted work. SaB and HR report grants from Gilead and AbbVie, outside the submitted work. All other authors declare no competing interests.

Acknowledgments
This study was supported by the British Heart Foundation through a Clinical Research Training Fellowship (FS/18/25/33454), Intermediate Clinical Research Fellowship (FS/19/17/3472), Senior Clinical Research Fellowship (FS/16/14/32023) and a Research Excellence Award (RE/18/5/32416). DAM is funded by a Wellcome Trust Intermediate Clinical Fellowship (201492/Z/16/Z). DEN is funded by a Senior Investigator Award (WT103782/AIA). The Polaris Observatory is supported by the John C Martin Foundation.

References
Articles

38 Piazza NA, Singal AK. Frequency of cardiovascular events and effect on survival in liver transplant recipients for cirrhosis due to alcoholic or nonalcoholic steatohepatitis. Exp Clin Transplant 2016; 14: 79–85.

