Edinburgh Research Explorer

Synthesis and structural characterization of a mimetic membrane-anchored prion protein

Citation for published version:

Digital Object Identifier (DOI):
10.1111/j.1742-4658.2006.05152.x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Febs Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Synthesis and structural characterization of a GPI-anchored prion protein

Matthew R. Hicks¹, Andrew C. Gill², Imanpreet K. Bath¹, Atvinder K. Rullay³, Ian D. Sylvester², David H. Crout³ and Teresa J. T. Pinheiro¹

¹ Department of Biological Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK
² Institute for Animal Health, Compton, Newbury, Berks, RG20 7NN, UK
³ Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK

Keywords
Prion protein; GPI-anchored prion; membranes; prion conversion; rafts; structure

Correspondence
Teresa JT Pinheiro, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK; Tel: +44 (0) 2476 528364; Fax: +44 (0) 2476 523701; E-mail: t.pinheiro@warwick.ac.uk

Running title: Lipid-anchored PrP
Abstract

During pathogenesis of transmissible spongiform encephalopathies (TSEs), an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphosphatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of \textit{in vitro} studies of the function, structure, folding and stability of PrP have focused on use of recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we have synthesised a GPI anchor mimetic (GPI\textsubscript{m}), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. We demonstrate that PrP coupled to GPI\textsubscript{m} (PrP-GPI\textsubscript{m}) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP is not perturbed when PrP-GPI\textsubscript{m} is reconstituted in phosphatidylcholine and raft membranes. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a GPI-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP.
Abbreviations: DPPC, Dipalmitoyl phosphatidylcholine; MES, 2-(N-morpholino) ethanesulphonic acid; MOPS, 3-(N-morpholino) propanesulphonic acid; OG, octyl-β-D-glucopyranoside; POPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine; PrP, Prion protein; PrP-S231C, recombinant Syrian Hamster prion protein, residues 23-231 (preceded by a methionine start codon) with Ser231 mutated to Cys; PrP-Glut, PrP-S231C with a disulfide bond between Cys 179 and Cys 214 and with a glutathione group disulfide-bonded to Cys 231; PrP-React, PrP-S231C with a disulfide bond between Cys 179 and Cys 214 and with Cys 231 reduced; PrP-GPIm, PrP-S231C with a disulfide bond between Cys 179 and Cys 214 and with a GPI mimetic disulfide bonded to Cys 231.
Introduction

Transmissible spongiform encephalopathies are a family of fatal, neurodegenerative diseases that includes scrapie of sheep, bovine spongiform encephalopathy (BSE) of cattle, chronic wasting disease (CWD) in cervids and Creutzfeldt-Jakob disease (CJD) in humans. These diseases are characterised by astrocytic gliosis, neuronal apoptosis and deposition of an abnormally folded isoform of the host encoded prion protein, PrPC \[1\]. PrPC is a small, cell surface glycoprotein, which is soluble in detergents and is protease-sensitive \[2\]. By contrast, the abnormal form, PrPSc, is insoluble in detergents and partially protease resistant, leading to accumulation of the protein in amyloid plaques and fibrils during disease. PrPSc is also believed to constitute the majority, if not all of the infectious agent in TSE diseases \[3, 4\].

PrPC is translated as a polypeptide of around 250 amino acids (depending on species) and contains two signal peptides, which are cleaved during post-translational processing \[5\]. An N-terminal signal peptide directs the protein to the endoplasmic reticulum (ER) for export, via the secretory pathway, to the outer leaflet of the plasma membrane, where it is anchored through a glycosylphosphatidylinositol (GPI) anchor. Attachment of the GPI anchor to the C-terminus of PrP occurs in the ER by a transamidation reaction, following proteolytic cleavage of the C-terminal signal peptide. During post translational processing in the secretory pathway, PrPC can also be N-glycosylated with diverse oligosaccharides at two asparagine residues, towards the C-terminal end \[6\], and a single disulfide bond is formed, also towards the C-terminus \[1\].

Initial studies of the structure of PrPC and PrPSc were carried out by Fourier transform infra red (FTIR) spectroscopy and indicated that PrPC is composed of around
35% \(\alpha \)-helix and a small amount of \(\beta \)-sheet, whereas \(\text{PrP}^{\text{Sc}} \) appears to have elevated levels of \(\beta \)-sheet [7, 8]. Higher resolution studies of \(\text{PrP}^{\text{C}} \) structure have made use of NMR and X-ray crystallographic methods, but have focused almost entirely on analysis of recombinant forms of the protein that lack the lipid anchor and glycosylation. These studies show that \(\text{PrP} \) has a folded, C-terminal domain, comprising approximately half of the protein’s amino acid sequence [9, 10]. This folded domain contains predominantly \(\alpha \)-helical structure with a small amount of \(\beta \)-sheet, in line with the early FTIR studies of \(\text{PrP}^{\text{C}} \). The N-terminal half of the protein appears to be flexible and disordered and contains four octa-peptide-repeat regions, which have been shown to bind copper ions [11-14]. The structure of recombinant \(\text{PrP} \) is assumed to represent the cellular form of \(\text{PrP} \). A recent report on the structure of \(\text{PrP}^{\text{C}} \) purified from healthy calf brains further supports this assumption [15]. In this study the protein is natively folded and retains the two glycosyl moieties but is cleaved from the GPI anchor and therefore released from the membrane surface.

There is no high-resolution structure of \(\text{PrP}^{\text{Sc}} \), but models have been constructed based initially on accessibility of antibody-binding epitopes and, more recently, on electron crystallographic measurements. The best current models suggest that \(\text{PrP}^{\text{Sc}} \) adopts parallel \(\beta \)-sheet structures with the \(\text{PrP} \) sequence from residues 89-175 forming a trimeric \(\beta \)-helical conformation, whilst the C-terminal region (residues 176-227) retains the disulfide-linked, \(\alpha \)-helical conformation present in \(\text{PrP}^{\text{C}} \) [16, 17].

The normal cell biology of \(\text{PrP}^{\text{C}} \) involves rapid, constitutive endocytosis from the plasma membrane [18], an event which requires interaction with additional cell surface molecules. Like other GPI-anchored proteins, \(\text{PrP}^{\text{C}} \) occupies specialised domains on the
cell surface known as lipid rafts [19], but appears to move out of these rafts prior to endocytosis [20]. The conversion from PrPC to PrPSc is thought to take place either on the cell surface [21-23] perhaps in lipid rafts [19, 24-28], or during internal transit in the endocytic pathway [27, 29-31]. It is also thought that partial unfolding is necessary, potentially assisted by accessory molecules. If the conversion is indeed a cell surface event, this requires a thorough understanding of the folding and interactions of PrP in its tethered conformation on the plasma membrane.

The interaction of PrP with different lipid components is complex and is not completely understood. Previously, we have shown that anchorless forms of PrP bind to lipid membranes [32-34]. This interaction involves both an electrostatic and a hydrophobic component. The composition of the membranes and conformation of PrP affect the strength of the binding and the propensity for aggregation of the protein. It was found that membranes can be disrupted by PrP under certain conditions [34]. Also, whereas some membranes lead to extensive aggregation or fibrillization of PrP, other membranes appear to provide protection against conversion [34, 35].

To date, most structural studies have been carried out on protein that does not contain a lipid anchor. However, as outlined above, there is considerable evidence that membrane anchored forms of PrP are involved in the pathological conversion process. In order to study the structure of PrP in a context closer to that found \textit{in vivo}, we have synthesised a GPI-mimetic (GPIm) that can be coupled to the C-terminus of PrP by reaction with the free thiol group of a genetically engineered cysteine residue. Coupling of GPIm to PrP occurs via a disulfide bond formed by nucleophilic attack, by the thiolate anion of the cysteine side chain, on the methane thiosulphonate group of GPIm. The resulting lipid-modified PrP molecule (PrP-GPIm) was reconstituted into different model
membranes (Fig. 1). The structure of PrP-GPIm inserted in lipid membranes was studied by infrared spectroscopy. The lipid composition of the membrane was chosen to represent the cellular environments in which the protein is found in vivo, such as inside or outside lipid rafts.

Results

A previous report by Eberl et al. [36] detailed the characterisation of recombinant PrP inserted in lipid membranes. This protein had a hydrophilic C-terminal extension of five glycines and a cysteine residue, which was coupled to a thiol-reactive lipid, PDP-DHPE (N-((2-pyridyldithio)-propinyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine). We have used a similar principle to covalently attach a synthetic GPI analogue to the thiol group of an engineered cysteine at the C-terminus of PrP, taking a somewhat different strategy. A cysteine residue replaces serine 231, where the natural GPI anchor is coupled to PrP, and we used a synthetic GPI analogue, which carries a linker region based on ethylene-glycol units (Rullay, Hicks, Pinheiro and Crout, in preparation). This linker places the protein at a distance from the membrane surface similar to that provided by the glycan moiety in the reported natural GPI anchor [37]. Several steps are required to couple the lipid anchor to PrP-S231C. During these steps, it is essential to maintain the single internal disulfide bond in PrP, whilst producing a free thiol moiety at the C-terminal cysteine.

Expression, purification and refolding of PrP-S231C

The C-terminal serine residue of Syrian hamster PrP was altered genetically to a cysteine residue by site-directed mutagenesis to produce the construct SHaPrP-S231C.
The protein was expressed in insoluble inclusion bodies by recombinant BL21Star *E. coli* and was solubilized and purified by size exclusion chromatography followed by reversed phase HPLC. After lyophilization, the protein was resuspended in an oxidation buffer containing both oxidised and reduced glutathione using a method modified from Mo *et al.* [38]. This reaction produced primarily monomeric PrP containing a single, native, internal disulfide bond with the C-terminal Cys231 protected by a glutathione molecule. This was confirmed by on line HPLC-mass spectrometric (HPLC-MS) analysis (Fig. 2A).

The equivalent PrP Cys mutant, PrP(Gly)$_6$Cys, of Eberl *et al.* [36] was refolded by disulfide oxidation on Ni-NTA columns, followed by selective reduction of disulfides in the resulting dimeric species. We attempted the method described in Eberl *et al.*, but found that glutathione mediated re-oxidation formed the correct product more specifically and in significantly higher yields. The glutathione protecting group was removed by brief treatment with DTT, the resulting product was purified by HPLC (Fig. 2B) and was found by HPLC-MS analysis to have an intact internal disulfide bond and a reduced C-terminal cysteine (Cys 231) (Fig. 2C). This process created a reasonable yield of the correctly folded PrP molecule with a free thiol at Cys 231, which we refer to as PrP-React.

Coupling of PrP-React to GPIm

We have synthesised a mimetic of a glycosylphosphatidylinositol membrane anchor, GPIm, and the details of this synthesis are the subject of a different manuscript (Rullay, Hicks, Pinheiro and Crout, *in preparation*). GPIm carries a reactive methane thiosulphonate group, which reacts with the thiolate anion of cysteine residues (see
Materials and Methods, Scheme 1). In trial coupling reactions, we determined that the efficiency of the coupling reaction is dependent on several factors. These include the solubility of both GPIm and PrP-React, temperature, pH, the reaction time and the ionic strength of the solution. Optimum solubility of lipids, such as GPIm, is typically achieved by use of organic solvents. Several solvents were investigated, including ethanol, methanol and DMSO, giving similar results. The solubility of GPIm at different ethanol concentrations is shown in Fig. 3A. Concentrations above 60% (v/v) ethanol in water were required to maintain GPIm in solution, and, consequently, allowed the coupling reaction to proceed at acceptable yields (Fig. 3B). The reaction should also proceed more rapidly at a higher pH, under which conditions the proportion of cysteine that is in the reactive, anionic form will be increased. However, we found that increasing the pH of the reaction buffer resulted in a decrease in the yield, probably due to decreased solubility of PrP-React in water/ethanol at high pH. It is also possible that the two positively charged arginine residues adjacent to Cys 231 in the primary structure of PrP may lower the effective pKₐ of the cysteine side chain by stabilising the negatively charged thiolate anion, thereby helping the reaction to proceed at lower pH. Our final empirically-determined reaction protocol involves the use of 70% (v/v) ethanol in water, 10-fold molar excess of GPIm and incubation at room temperature for 2 hours. The use of buffer (MES or MOPS) even at low concentrations (2 mM) resulted in a decrease in the yield (data not shown). This was probably due to a decrease in the solubility of the protein in ethanolic solutions in the presence of salts. For this reason, buffers were not added to the coupling reactions. The pH of the solutions was measured and found to be approximately pH 6. Typically, 0.5 mg of PrP-GPIm were obtained per mg of PrP-React. Correctly formed product, PrP-GPIm, was separated from non-coupled PrP-React.
React by RP-HPLC (Fig. 4A) and the molecular weight of the product was confirmed by HPLC-MS (Fig. 4B).

Reconstitution of PrP-GPIm into membranes

PrP-GPIm was anchored in lipid membranes through the insertion of the hydrocarbon chains of GPIm into the lipid bilayer. Several methods are commonly used to reconstitute integral membrane proteins and GPI-anchored proteins into membranes [39, 40]. Our approach was to pre-form liposomes, partially disrupt them with detergent and mix with PrP-GPIm. Upon detergent removal, liposomes are re-formed, in which PrP-GPIm is anchored.

The concentration of the detergent octyl-β-D-glucopyranoside (OG) required to induce a phase break in the liposomes was determined by titration of a concentrated stock of OG into a suspension of liposomes [39]. The turbidity was monitored at 350 nm and solubility curves identified for both 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and raft liposomes (Fig. 5). The concentration of OG at the midpoint of the transition was found to be 22 mM for POPC and 28 mM for rafts at 20 °C.

After detergent dialysis, reconstituted liposomes containing PrP-GPIm were separated on sucrose gradients and analysed by SDS-PAGE (see Materials and Methods). Eight fractions spanning the entire sucrose gradient were collected and the lipid was visible as a turbid band in the top three fractions for POPC samples and mainly in fraction 3 for raft samples. The majority of PrP-GPIm co-migrated with the liposomes (Fig. 6). The fraction of PrP-GPIm that was associated with the liposomes was assessed by densitometry of the bands on the SDS-PAGE gels in the first three lanes as a percentage of the total across all eight sample lanes. Reconstitution efficiencies
appeared independent of pH and were ~ 90% for POPC liposomes and ~ 70% for raft liposomes.

Structure of PrP-GPIm in liposomes

The structures of PrP-GPIm and wild type PrP (PrP-WT) in solution were probed by circular dichroism (CD) and attenuated total reflection (ATR) FTIR. The far-UV CD spectrum of PrP-WT shows the typical minima around 208 and 222 nm (Fig. 7A) associated with proteins containing predominantly α-helical structure. In contrast, the CD spectrum of PrP-GPIm shows a single broad minimum around 214 nm and a characteristic loss in signal intensity, which are associated with β-sheet structure. These spectral properties indicate that PrP-GPIm in solution has an elevated content of β-sheet relative to PrP-WT. These results are consistent with the spectral changes observed by ATR FTIR. The amide I region of the FTIR spectrum for PrP-GPIm and PrP-WT is shown in Fig. 7B. The amide I band arises mainly from stretching modes of the backbone carbonyl bonds in the protein. The positions of absorbance bands are dependent on secondary structure and, therefore, can be used to measure the amount of different types of secondary structure in proteins. Since the bands overlap it is necessary to use peak fitting analysis to deconvolute the contributions from different secondary structural components. The amide I band of PrP-WT in solution is centered around 1645 cm\(^{-1}\) due to the contribution from both random coil (30%) and α-helical structure (32%). There are also contributions from β-sheet (21%) and β-turns (17%). Although the levels of β-sheet measured here are greater than the level predicted from NMR structures of the folded C-terminal domain of PrP (residues 90–231) [41], the differences may be attributable to the adoption of a β-sheet-like extended structure by
the N-terminal region of PrP comprising residues 23–90 upon deposition on the ATR crystal. Although the N-terminal region is traditionally thought of as flexible and unstructured, several recent papers have indicated that stable, extended structures are present within this domain [42-44]. The ATR FTIR spectrum of PrP-GPIm in solution is distinct from that of PrP-WT (Fig. 7B). Secondary structure calculations suggest that PrP-GPIm in solution has a higher content of β-sheet compared with the anchorless protein (PrP-GPIm has 37% β-sheet compared with 21% in PrP-WT) at the expense of α-helix (32% in PrP-GPIm, 19% in PrP-WT) and some random coil (30% in PrP-GPIm, 23% in PrP-WT).

After insertion of PrP-GPIm into membranes, ATR FTIR spectra were acquired for POPC and raft membranes containing PrP-GPIm at pH 5 and pH 7. The amide I region of the ATR FTIR spectrum for PrP-GPIm inserted in POPC and raft membranes, at pH 5, is shown in Fig. 7B. Insertion of PrP-GPIm into lipid membranes returns the structure of PrP to the original α-helical structure of PrP-WT. Similar spectra were observed for reconstituted PrP-GPIm at pH 7 (data not shown). The secondary structure content, estimated from peak fitting analysis, was found to be very similar to that of PrP-WT. These results indicate that PrP-GPIm in POPC and raft membranes have a very similar structure and demonstrate that the structure of PrP in these membranes resembles the structure of anchorless protein in solution.
Discussion

Membrane-anchored PrP has a similar structure to soluble anchorless PrP

There are several published methods by which lipid anchored proteins can be reconstituted into liposomes. Reconstitution of proteins into membranes for subsequent structural or functional studies requires that the method used does not perturb the native structure of the protein irreversibly. Most methods involve the use of detergent, which can often adversely affect protein structure [39]. The best method for the reconstitution of a particular protein often has to be determined empirically.

We attempted various methods for reconstituting PrP-GPIm into membranes. Spontaneous insertion of the lipid-anchored protein into pre-formed liposomes did not occur; this may be due to a low partition energy between PrP-GPIm in solution and PrP-GPIm anchored in the membrane. Two observations are consistent with this interpretation: firstly, the lipid-modified protein (PrP-GPIm) was readily soluble in water and secondly, the structure of PrP-GPIm in solution was altered relative to the anchorless protein (PrP-WT) (Fig. 7). The latter suggests an interaction of the lipid anchor with the protein in the absence of membranes, which may explain why spontaneous membrane insertion of PrP-GPIm was not observed. However, the use of OG promoted the insertion of PrP-GPIm into liposomes, producing a membrane-reconstituted protein in which the normal, α-helical structure of PrP is restored (Fig. 7B).

Solution NMR structures of various recombinant forms of prion proteins, all lacking a GPI anchor, have been proposed to represent the structure of the cellular form of PrP anchored in the cell membrane [41, 45, 46]. Furthermore, molecular dynamic calculations revealed that the glycan region in the natural GPI of PrP was highly flexible.
which led to the speculation that PrP could adopt a wide range of orientations relative to the plane of the cell membrane. Some of these orientations would allow the possibility of direct interactions of the protein with the membrane surface, which could lead to a different protein structure relative to the reported structures of anchorless PrP in solution. To test these possibilities, membrane reconstitution of a lipid-anchored form of PrP is imperative.

Reconstitution of PrP-GPIm in two types of model membranes, POPC and raft membranes, at either pH 7 or 5, resulted in a conformation of PrP that resembles the anchorless protein in solution. Similar findings were reported by Eberl et al. [36] with an alternate membrane-anchored PrP construct. In both Eberl’s and the present lipid-modified PrP constructs, the prion protein is placed at a distance from the membrane surface via a linker region which mimics that provided by the flexible glycan moiety of the natural GPI anchor in PrP. In the PrP construct of Eberl et al., this linker is made of five Gly residues at the C-terminus of the protein, whereas in our protein the linker is provided by six ethylene-glycol units in the hydrophilic portion of the lipid molecule (Scheme 1 in Materials and Methods). The independent results from both laboratories using different constructs of GPI-anchored PrP, show unequivocally that GPI-anchored prion protein, when reconstituted in POPC and raft membranes, retains the structural characteristics of PrP-WT in solution. Therefore, the results strongly suggest that when PrP is localised in phosphatidyl choline-rich lipid environments in the plasma membrane of neurons or within rafts in vivo, the protein has a similar structure to that of the soluble anchorless forms determined by NMR spectroscopy.
Prion conversion and membranes

Cell biology studies implicate the plasma membrane surface as the likely site of prion conversion [19, 48, 49]. Since, the prion protein is predominantly localised within cholesterol and sphingomyelin-rich domains, or lipid rafts, in its cell-anchored form, it has been proposed that PrP conversion is likely to occur in rafts. Several lines of evidence implicate lipid rafts in prion conversion, but their precise role in this process is not fully understood and contradictory reports exist (reviewed in [50]). Some cell biology experiments appear to indicate that conversion could occur inside rafts whereas others support conversion outside rafts. The precise lipid environment experienced by PrP may be a crucial factor in prion pathogenesis. Recent studies have shown that the prion protein moves out of rafts before being endocytosed and rapidly recycled back to the cell surface [51]. This movement of PrP in and out of rafts exposes PrP to different lipid environments, which could affect the structure of PrP. Furthermore, prion plaques and aggregates extracted from diseased brains have been shown to contain lipids [52], which further supports the hypothesis that conversion must occur at the membrane surface and lipid may be involved in the actual molecular mechanism of prion conversion.

A lipid-mediated conversion process of PrP is particularly relevant in sporadic cases of TSEs where, by as a yet unknown mechanism, the normal cellular form of PrP is spontaneously converted to aberrant aggregated forms associated with disease. An anomalous interaction of PrP with lipid could provide the initial unknown factor in spontaneous formation and subsequent accumulation of abnormal conformations of PrP. Therefore, in vitro studies employing a lipid-anchored prion molecule offer the
potential to unravel the effect of different lipid environments on prion structure and conversion.

Previous studies have shown that anchorless forms of PrP can interact with various model lipid membranes and that this results in protein structural changes that lead to aggregation and/or fibrillization of PrP, depending on the lipid environment and starting conformation of the protein [33, 34]. The α-helical isoform of PrP, representing the cellular prion protein, can bind to raft membranes but this does not induce aggregation of PrP. In contrast, an altered β-sheet-rich form of PrP has a high affinity to raft membranes resulting in prion fibrillization. Binding of α-helical and β-sheet-rich forms of PrP to negatively charged lipids, typically found outside rafts in cell membranes, results in amorphous aggregation of prion proteins. These results, combined with the observed rapid transit of PrP in and out of rafts [51], have led us to propose that early steps in the conversion of PrP from its cellular, α-helical conformation to altered, β-sheet-rich states, prone to aggregation, may occur outside rafts [50]. Upon re-entry in rafts, β-sheet-rich forms of PrP have higher affinities to raft lipid components and aberrant prion molecules may start to accumulate within rafts, promoting protein-protein interactions which ultimately result in aggregation and fibrillization of PrP.

We have previously investigated the interaction of soluble, anchorless α-helical PrP with raft and POPC membranes. In these membranes, anchorless forms of prion proteins either do not directly interact with these lipids or if they do, no detrimental structural changes that would lead to aggregation are induced [34]. In the current study, insertion of lipid anchored construct PrP-GPIm into POPC and raft membranes results in protein that regains its α-helical structure and FTIR spectra of this protein are similar to
those of soluble constructs of anchorless PrP. The results suggest that the lipid raft environment protects the α-helical conformation of PrP, in line with our hypotheses that conversion is initiated outside rafts [50]. It remains to be tested whether reconstitution of anchored PrP-GPIIm in a lipid environment that resembles that outside rafts alters the structure of PrP.

Materials and methods

Expression and purification of PrP

The plasmid (pTrcSHaPrPMet23-231) encoding the Syrian hamster prion protein was prepared as described previously [53]. The mutant protein PrP-S231C was constructed by site directed mutagenesis of pTrcSHaPrPMet23-231 using a QuikChange® kit (Stratagene) according to the manufacturer's instructions. Briefly, the complimentary mutagenic primers (IDS12A, 5'-CGATGGAAGAAGGTGCTGAGAATTCGAAGC-3' and IDS12B, 5'-GCTTCGAATTCTCAGCACCTTCCATCC-3') were synthesised and purified by MWG-Biotech AG to their “high purity salt free” (HPSF) standard. The mutagenesis reaction was performed in a thermal cycler using the following conditions: 1 cycle of (30 s at 95 °C) and 15 cycles of (30 s at 95 °C, 1 min at 55 °C and 10 min at 68 °C). Mutant clones were identified by DNA sequencing. The resulting plasmid will be referred to as pPrP-S231C.

pPrP-S231C was used to transform the protease-deficient strain of *E. coli*, BL21Star (Invitrogen). This strain had already been transformed with the Rosetta plasmid (Novagen), which codes for mammalian tRNAs that are rare or absent in *E. coli*. Transformed cells were grown overnight at 37 °C on Luria-Bertani (LB) agar containing
ampicillin (100 µg/mL) and chloramphenicol (37 µg/mL). A single colony was grown in LB medium until an absorbance of 0.6 at 600 nm was reached. Protein expression was then induced by the addition of 0.1 mM isopropyl-D-thiogalactopyranoside (IPTG) and the cells grown for a further 16 hours. PrP-S231C is expressed in inclusion bodies. Cells were harvested by centrifugation and disrupted by sonication. Inclusion bodies were isolated by centrifugation at 27,000 g for 30 minutes and washed twice in 25 mM Tris-HCl pH 8.0, 5 mM EDTA. The inclusion bodies were solubilized in 8 M guanidine hydrochloride, 25 mM Tris-HCl pH 8.0, 100 mM dithiothreitol. The solubilized reduced PrP-S231C was applied to a size exclusion column (Sephacryl S-300HR 26/60, Amersham Biosciences) and eluted in 6 M guanidine hydrochloride, 50 mM Tris-HCl pH 8.0, 5 mM dithiothreitol, 1 mM EDTA. Fractions containing reduced PrP-S231C were then applied to a reverse-phase HPLC column (Poros R1 20, Applied Biosystems) and eluted in a water-acetonitrile gradient in the presence of 0.1% (v/v) trifluoroacetic acid. The purified, reduced PrP-S231C was lyophilised. Typically yields of 15-25 mg of reduced PrP-S231C per litre of culture were obtained.

Oxidation of reduced PrP-S231C

Formation of the native disulfide bond was carried out, using a method modified from Mo et al. [38]. Briefly, reduced PrP-S231C at a concentration of 1 mg/mL in 8 M guanidine hydrochloride, 25 mM Tris-HCl pH 8.0, was added drop-wise to 9 volumes of 50 mM Tris-HCl, 0.6 M L-arginine, 5 mM reduced glutathione, 0.5 mM oxidised glutathione pH 8.5 and left stirring overnight at 4 °C. The sample was centrifuged at 4500 g at 4 °C for 15 minutes to remove any precipitate and the supernatant was dialysed against 10 mM Tris-HCl pH 7.2. Precipitated protein (containing aggregated PrP) was removed using a
0.2 µm filter. The supernatant contained PrP with the native disulfide bond and glutathione protected C-terminal cysteine (Cys231). The glutathione protecting group on Cys231 was removed by treatment with 10 mM dithiothreitol for 10 minutes. The protein was applied to a reverse-phase HPLC column (Poros R1 20, Applied Biosystems) and eluted in a water-acetonitrile gradient in the presence of 0.1% (v/v) trifluoroacetic acid. The resulting purified PrP-React was lyophilised. The yield of the oxidation reaction followed by dialysis and subsequent removal of precipitated protein was typically 80% of the reduced protein obtained. This gave an overall yield of PrP-React of 12-20 mg per litre of culture.

Synthesis of GPIm

A mimetic of the GPI anchor (GPIm) was synthesised as detailed in Rullay, Hicks, Pinheiro and Crout (in preparation). GPIm contains two palmitoyl chains linked to a hexa-ethylene-glycol linker with a thiosulphonate reactive group (Scheme 1). The product was characterised by mass spectrometry and NMR.

\[
\begin{align*}
&\text{Scheme 1. 3-(Hexadecane-1-sulfonyl)-2-(hexadecane-1-sulfonylethyl) propionic acid} \\
\end{align*}
\]

Coupling reaction between PrP-React and GPIm

One volume of a concentrated solution (250 µM) of PrP-React in water was added to nine volumes of GPIm in an ethanol/water solution, resulting in a reaction mixture containing 70% ethanol in water (v/v) and a 10-fold molar excess of GPIm relative to PrP-React ([GPIm] = 250 µM; [PrP-React] = 25 µM). The solution was stirred for 2 hours
at room temperature and applied to a reverse-phase HPLC column (Poros R1 20, Applied Biosystems). The product, GPIm-modified protein (PrP-GPIm), was separated from unmodified protein on a water-acetonitrile gradient in the presence of 0.1% TFA.

Liquid chromatography mass spectrometry (LC-MS)

All mass spectrometry was performed in the Proteomics Facility at the Institute for Animal Health as previously described [43]. Briefly, proteinaceous samples were analysed by online capillary HPLC (180 µm i.d., 5 µm bead size, 300 Å pore size, Jupiter C18, Phenomenex, Macclesfield, UK). Retained components were eluted from the home-packed column by an increasing gradient of solvent B, where solvent A was 95:5 H2O:acetonitrile with 0.05 % trifluoroacetic acid (TFA) and solvent B was 5:95 H2O:acetonitrile with 0.05 % TFA. Prior to analysis, samples were diluted with solvent A to approximately 1 pmole/µl and around 20 pmole of total protein was injected onto a homemade pre-concentration trap for initial desalting. The HPLC eluate was passed directly to a Quattro II mass spectrometer (Waters UK Ltd) equipped with a continuous-flow nanospray source. The mass spectrometer was operated in positive ion mode and acquired full scan mass spectra (m/z 300-2100) every 5 seconds.

Liposome preparation

Single lipids or mixtures of lipids were mixed in chloroform solution and dried under nitrogen to form lipid films. The films were further dried overnight under vacuum to remove residual chloroform. Vesicles were prepared in 2 mM 2-(N-morpholino)ethanesulphonic acid (MES) at pH 5 or pH7 containing either POPC only, or a mixture of dipalmitoyl phosphatidylcholine (DPPC), cholesterol (chol) and sphingomyelin (SM) at a molar ratio of 5:3:2. Mixed DPPC/chol/SM (5:3:2) vesicles
represent the composition of chol- and SM-rich domains in the plasma membrane, known as rafts, and are referred to here as raft membranes. The aqueous buffer was flushed with nitrogen prior to hydration of the lipid film. To break multilamellar vesicles, the hydrated lipid samples were subjected to five cycles of freezing and thawing (under nitrogen) using a dry ice-ethanol mixture and a 55 °C water bath. Vesicles were extruded ten times through two 200nm polycarbonate membranes under nitrogen at a pressure of 150psi and a temperature of 55 °C in a stainless steel extrusion device (Lipex Biomembranes, Vancouver). The size of the liposomes was measured at 20 °C by dynamic light scattering on a DynaPro molecular sizing instrument (Hampton Research, Aliso Viejo CA) and was found to be similar to the pore size of the membrane used for the extrusion process. The change in the size and polydispersity of the liposomes was minimal after 10 extrusion cycles [54].

Reconstitution of PrP-GPIm into liposomes

Liposomes were titrated at 20 °C with the detergent octyl-β-D-glucopyranoside (OG) (Fluka) and light scattering at 350 nm was followed in a spectrophotometer. The midpoint of solubilization for the liposomes was determined. This concentration of OG was used in the reconstitution of PrP-GPIm into liposomes. PrP-GPIm was mixed with the appropriate amount of OG and sonicated for 15 minutes in a water bath at room temperature. Liposomes were added to yield final concentrations of: PrP-GPIm 10μM, total lipid 1mM, OG 22mM – 28mM (depending on lipids used), in 2 mM MES buffer at pH 5 or 7. The mixture was placed in a sonicating water bath and sonicated twice at room temperature for 15 minutes. Samples were kept at room temperature for a further
30 minutes. OG was removed by extensive dialysis at room temperature against 2 mM MES buffer at pH 5 or 7.

The incorporation of PrP-GPIm into liposomes was assayed using sucrose gradient centrifugation. Discontinuous sucrose gradients were prepared, where reconstituted PrP-GPIm in lipid vesicles was adjusted to 40 % sucrose and overlaid with a 30 % sucrose layer followed by a 5 % sucrose layer. The samples were spun at 140,000 g in a Beckman SW50.1 rotor at 4 °C for 16 hrs. Eight fractions spanning the entire gradient were taken from the top and analysed by SDS-PAGE to detect protein-containing fractions. Lipid-containing fractions were identified by turbidity and dialysed against 2 mM MES at pH 5 or 7 to remove the sucrose. Liposomes were harvested by centrifugation at 140,000 g in a Beckman SW50.1 rotor at 4 °C for 1 h. The supernatant was discarded and the liposomes re-suspended in ¼ of the original volume of the reconstitution mixture in 2 mM MES at pH 5 or 7.

Circular dichroism spectroscopy

Circular dichroism (CD) spectra were collected at room temperature (21 °C) using a 0.1 cm path length quartz cuvette (Starna brand, Optiglass Ltd., Hainault) in a Jasco J-715 spectropolarimeter (Jasco UK, Great Dunmow). The bandwidth was 2 nm and the scanning speed was 200 nm.min⁻¹ with a response time of 1 second and a data pitch of 0.5 nm. Typically, 16 spectra were averaged and buffer baselines were subtracted from the data.
ATR FTIR

Liposomes were deposited on a germanium internal reflection element (IRE) and dried under nitrogen. Spectra were measured using a Vector 22 instrument (Bruker) fitted with a mercury cadmium telluride (MCT) detector. Data are at a resolution of 4 cm\(^{-1}\) and are an average of 1024 spectra collected at room temperature (21 °C). The water vapour signal was removed from the spectra and peak fitting was performed using GRAMS AI software (ThermoGalactic, Salem). Lorentzian curves were fitted to the amide I band of the PrP signal and assigned to a secondary structure type according to Byler and Susi [55].

Acknowledgements

This project has been funded by a BSEP5 grant awarded by the BBSRC to TJTP (Grant No. 88/BS516471). ACG thanks Jennifer Carswell and Dave Gerring for technical assistance and BBSRC for financial support. The manuscript was read by Professor John Ellis (Warwick University) to whom the authors are very grateful for insightful comments and suggestions.

Figure legends

Fig. 1. Schematic diagram of PrP-GPIm anchored in a lipid membrane. The mimetic GPI anchor (GPIm) is shown in orange coupled via a disulfide bond (S-S) to a Cys residue at the C-terminus at the end of helix C in PrP. The lipid membrane is represented by a fragment of a bilayer formed by ideally packed lipid molecules, comprising a hydrophilic head group (dark-blue circles) and hydrophobic acyl chains (yellow tails). The folded C-terminal domain of the protein shows the 3 helices in red (A,
B, C) and the small anti-parallel β-sheet in green [41]. The N-terminal portion (residues 23–126) has no defined, high resolution structure and is shown schematically in light-blue with N labelling the N-terminus. The internal disulfide bond between the two main helices (B and C) is shown in yellow.

Fig. 2. Mass spectrometric characterisation and HPLC separation of refolded states of PrP-S231C. (A) Electrospray mass spectrum and (inset) deconvoluted mass spectrum of PrP-Glut after refolding of PrP-S231C in the presence of glutathione. The measured mass (23,424.6 Da) is in good agreement with the calculated mass (23,423.9 Da) for PrP with an intact internal disulfide bond and a modified C-terminal Cys 231 residue with a single glutathione molecule. (B) HPLC purification of PrP-Glut after treatment with the reducing agent DTT to give PrP-React. The main peak is the desired product and the smaller shoulder is fully reduced material that was discarded by peak cutting. (C) Electrospray mass spectrum and (inset) deconvoluted mass spectrum of PrP-React. The measured mass (23,119.3 Da) agrees with the calculated mass (23,118.6 Da) for PrP with an internal disulfide bond and the presence of a free thiol group on Cys 231.

Fig. 3. Solubility and reactivity of the lipid anchor GPIm in ethanol / water mixtures. (A) The solubility in ethanol / water mixtures was monitored by light scattering at 450 nm. Insoluble GPIm creates a suspension that scatters light and gives a large signal. As the ethanol concentration increases the GPIm stays in solution and therefore scatters less light and gives a smaller signal. (B) The efficiency of the coupling reaction between PrP-React and GPIm was monitored by peak area of the product on an HPLC gradient. Maximal product was obtained around 70% ethanol.
Fig. 4. HPLC purification and MS characterisation of PrP-GPIm. (A) After reaction of PrP-React with GPIm, the product PrP-GPIm was purified by RP-HPLC. The product elutes as a broad peak at around 220 seconds and uncoupled material elutes at around 180 seconds. (B) Electrospray mass spectrum and (inset) deconvoluted mass spectrum of PrP-GPIm. The measured mass of 24,064.3 Da agrees with the expected calculated mass of 24,064.1 Da.

Fig. 5. Solubilization of liposomes by the detergent octyl-β-D-glucopyranoside (OG) at 20 °C. Liposomes formed by extrusion at pH 7 (open circles) and at pH 5 (filled circles) were titrated with OG and the turbidity was monitored at 350 nm. The drop in turbidity above 20 mM OG represents the detergent-solubilization of liposomes. (A) POPC liposomes at pH 7 (open circles) and pH 5 (filled circles). (B) The process was repeated for raft liposomes at pH 7 (open circles) and at pH 5 (filled circles).

Fig. 6. SDS-PAGE of fractions from density gradient separation of reconstitutions of PrP-GPIm in lipid membranes. Membrane reconstitutions of PrP-GPIm were separated on sucrose step gradients and 8 fractions spanning the entire sucrose gradient were collected from top-to-bottom. The fractions were analyzed for protein by SDS-PAGE. From left-to-right the lanes are markers (M) and the eight fractions (labelled 1 to 8) from the gradient. Samples of PrP-GPIm were reconstituted into vesicles containing (A) POPC at pH 5, (B) POPC at pH 7, (C) rafts at pH 5 and (D) rafts at pH 7. Lipid was visible in fractions 1 to 3 for POPC (A and B) and in fraction 3 for raft lipids (C and D). The majority of the protein co-migrated with the liposomes in the sucrose gradient.
Fig. 7. Structure of PrP-GPIm compared with PrP-WT in solution. (A) Far-UV CD spectra of PrP-WT (solid line) and PrP-GPIm (dashed line) in solution at pH 5. (B) The amide I region of ATR FTIR spectra of PrP-WT (solid line) and PrP-GPIm (dashed line) in solution at pH 5 compared with PrP-GPIm after reconstitution into POPC (dash-dot line) and raft membranes (dash-dot-dot line) at pH 5.

References

Figure 1

Hicks et al
Figure 2
Hicks et al

A: 23424.62±1.38

B: 23119.26±1.51
Figure 3
Hicks et al
Figure 4
Hicks et al

Time (seconds)

Absorbance at 280nm

A

B: 24064.26 ± 4.65

mass

e/2
Figure 5

Hicks et al.
Figure 6

Hicks et al
Figure 7

Hicks et al

A

Molar Ellipticity
(deg cm² dmol⁻¹)

-12000
-6000
0
6000

Wavelength (nm)

200 220 240 260

B

Absorbance

1725 1675 1625 1575

Wavenumber (cm⁻¹)