Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL

Citation for published version:

Digital Object Identifier (DOI):
10.1016/S0014-5793(03)01007-X

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
FEBS Letters

Publisher Rights Statement:
copyright 2003 Federation of European Biochemical Societies. Open access article

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPARγ

Keri L.H. Carpenter*, Iain R. Challis, Mark J. Arends

University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK

Received 30 July 2003; accepted 4 August 2003

First published online 16 September 2003

Edited by Barry Halliwell

1. Introduction

Death of macrophages and smooth muscle cells (SMC) occurs in human advanced atherosclerotic lesions (plaques), by apoptosis and necrosis [1–3]. Macrophage foam cells that die and are not phagocytosed can spill lipid into the extracellular environment and so contribute to the lipid core of the plaque [4,5], whilst death of SMC erodes the fibrous cap [2]. Such changes destabilise plaques, increasing the risk of rupture and consequent thrombosis [5–7].

Evidence implicating oxidation of low-density lipoprotein (LDL) in atherosclerosis progression includes that oxidised LDL (oxLDL) and lipid peroxidation products occur in atherosclerotic lesions [8–10], and that oxLDL is toxic and apoptosis-inducing for macrophages and SMC in vitro [11–15]. OxLDL contains a complex, variable, incompletely characterised mixture of toxic oxidation products. Lipid hydroperoxides appear relatively early on in the oxidation and aldehydes arise from their subsequent breakdown [16]. Aldehydes modify the LDL protein (apoB-100), increasing its negative charge [16]. Cholesterol oxidation products (also termed oxysterols) appear consequentially to the peroxidation of polyunsaturated fatty acids (PUFA) within LDL [17,18]. The LDL-borne enzyme lipoprotein-associated phospholipase A2 (Lp-PLA2), also termed platelet-activating factor acetylhydrolase, hydrolyses oxidised phosphatidylcholine (oxPC), but not non-oxidised phosphatidylcholine (PC), producing lysophosphatidylcholine (lyso-PC) and oxidised, non-esterified fatty acids (oxNEFA) [19,20]. Lipid oxidation products can activate cell transcription factors known as peroxisome proliferator-activated receptors (PPAR), especially PPARγ, which may induce apoptosis. Various synthetic PPARγ activators induced apoptosis in vitro, in macrophages [21] and in cancer cell lines [22,23]. A natural PPARγ activator, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a cyclo-oxygenase metabolite of arachidonic acid, induced apoptosis in vitro, in macrophages and endothelial cells [21,24]. OxLDL and certain LDL oxidation products, 9- and 13-hydroxyoctadecenoic acids, activated PPARγ in CV-1 cells [25]. In human atherosclerotic lesions, PPARγ occurs in macrophages in a pattern highly correlated with oxidation-specific epitopes [26–28]. A moderately oxidised form of LDL decreased SMC viability and induced SMC apoptosis in vitro, whereas a more strongly oxidised form of LDL did not, and neither did a very mildly oxidised form of LDL or native LDL (natLDL) [15]. In macrophages, moderately oxidised LDL induced death, including apoptosis, which was diminished by inhibiting Lp-PLA2 within natLDL prior to oxidation [20]. The present study’s purpose was to investigate the effect of degree of

*Corresponding author. Present address: Wolfson Brain Imaging Centre, University of Cambridge, Box 65, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK. Fax: (44)-1223-331826. E-mail address: klc1000@wbc.cam.ac.uk (K.L.H. Carpenter).

Abbreviations: AO, acridine orange; 15d-PGJ2, 15-deoxy-Δ12,14-prostaglandin J2; ELISA, enzyme-linked immunosorbent assay; FCS, foetal calf serum; FOX, ferrous oxidation of xylenol orange; GC, gas chromatography; HMM, human monocyte-macrophages; LDH, lactate dehydrogenase; LDL, low-density lipoprotein; Lp-PLA2, lipoprotein-associated phospholipase A2; lyso-PC, lysophosphatidylcholine; MDA, malondialdehyde; NA, no additions; natLDL, native low-density lipoprotein; oxLDL, oxidised low-density lipoprotein; ox(1)LDL, ox(2)LDL and ox(3)LDL, very mildly, mildly and moderately oxidised low-density lipoprotein; oxNEFA, oxidised non-esterified fatty acid; oxPC, oxidised phosphatidylcholine; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PFB, Pefabloc; PPAR, peroxisome proliferator-activated receptor; PUFA, polyunsaturated fatty acid; REM, relative electrophoretic mobility; SMC, smooth muscle cells; TBARS, thio-barbituric acid-reactive substances.

© 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Key words: Cell death; Oxidized low-density lipoprotein; Peroxidation; Lipoprotein-associated phospholipase A2; Peroxisome proliferator-activated receptor γ; Monocyte-macrophage (human)
LDL oxidation, focusing on mild and moderate degrees, on macrophage death (overall death, as well as apoptosis), and to explore the roles of Lp-PLA2 and PPARγ therein. SMC were compared in selected cases.

2. Materials and methods

Ciglitazone and M199 medium were from Sigma. SB222657 and GW9662 were gifts of Glaxo SmithKline. Other materials were as described previously [20]. Dimethyl sulphoxide (final concentration \(\leq 0.5\% \, v/v\) was the solvent vehicle for ciglitazone, SB222657 and GW9662.

Isolation (from buffy coat) and culture conditions for human monocyte-macrophages (HMM) were as described previously [20]. HMM were cultured for 1 day before starting experiments, unless stated otherwise. Mature HMM were produced by culturing monocytes for 4–5 days before starting experiments. All HMM cultures and experiments were in Gibco Macrophage-SFM (serum-free medium), in 24-well plates. SMC derived from human aortic explants were cultured in M199 medium (Sigma) plus 20% foetal calf serum (FCS) in T75 (75-cm\(^2\)) tissue culture flasks (Falcon, Becton Dickinson). Medium was renewed every 2–3 days. Cultures were passaged when nearing confluence, and were not used above passage 11. For toxicity experiments, SMC were plated into 24-well plates in M199 (without phenol red) plus 2% FCS and were used at c.80% confluence.

Isolation of natLDL and oxidation at 1 mg LDL protein/ml by Cu\(^{2+}\) ions (10 \(\mu M\)) in phosphate-buffered saline (PBS; pH 7.4) for 15 h at 37°C, producing moderately-oxLDL (ox(3)LDL) were as described previously [20]. Dimethyl sulphoxide (iron-(II) sulphate, 10 \(\mu M\)) was used to oxidise LDL (1 mg LDL protein/ml) for 15 h at 37°C, either in saline (sodium chloride 0.9% \, w/v\) in high-purity Milli-Q deionised water) producing mildly-oxLDL (ox(2)LDL) or at pH 5.5 in PBS producing very mildly-oxLDL (ox(1)LDL). Treatment of natLDL with SB222657 (2 \(\mu M\)) or Pefabloc (PFB; 500 \(\mu M\)) prior to oxidation was as described previously [20].

After 15 h oxidation, oxLDLs were Chelex-treated and diluted to 0.5% v/v with saline and 1 mg LDL protein/ml with cells were incubated in these media with no additions (NA), or with cells were for 48 h unless stated otherwise. Negative controls were cells incubated in these media with no additions (NA), or with natLDL. Gliotoxin (3 \(\mu M\)), an established apoptosis-inducing agent for HMM, was used for a positive control.

Total hydroperoxides were measured by the ferrous oxidation of xylenol orange (FOX) assay, version ‘FOX2’ [31], and in selected cases additionally by an isodometric method [32]. Other assays were as described previously [20].

Data are reported as mean ± S.E.M.; \(n\) is the number of individual specimens or culture wells. Statistical analysis was by ANOVA and Student’s t-test (unpaired), using StatView 5.0.1 software. The level of significance was \(P<0.05\). Experiments were repeated several times and representative data are presented.

3. Results and discussion

Ox(3)LDL, ox(2)LDL and ox(1)LDL were compared for cell death-inducing effects and for chemical composition. Ox(2)LDL induced significantly more overall death of HMM than ox(3)LDL, measured by the LDH release assay (Fig. 1). Likewise, for SMC, LDH release after 48 h was significantly higher (\(P=0.0009\)) for ox(2)LDL (73.2 ± 0.6\%, \(n=3\)) than for ox(3)LDL (44.2 ± 3.2\%, \(n=3\)). SMC LDH release was 12.2 ± 1.2\% (\(n=3\)) for NA and 13.4 ± 1.7\% (\(n=3\)) for natLDL. Ox(2)LDL induced significantly more HMM apoptosis (measured by nucleosome ELISA) than did ox(3)LDL (Fig. 2). Ox(1)LDL was non-toxic to HMM, measured by LDH release (Fig. 1), although it induced a low (yet statistically above-background) degree of HMM apoptosis (Fig. 2), less than ox(3)LDL.

Time-course measurements (0–24 h; Fig. 3) by the FOX assay and relative electrophoretic mobility (REM) on agarose gels demonstrated that 15 h oxidation appeared optimal for differentiating composition between the three types of oxLDL, and so was adopted to prepare oxLDLs for cell death induction studies, reported above. During moderate LDL oxida-
tion, hydroperoxides peak early on, and then decline rapidly. For mild LDL oxidation, hydroperoxides peak later and remain high, as decline is slow. After 15 h oxidation, ox(2)LDL consistently contained higher levels of hydroperoxides (FOX assay), lower levels of oxysterols measured by gas chromatography (GC), lower levels of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid-reactive substances (TBARS) assay and lower REM (i.e. less negative charge), than did ox(3)LDL (Fig. 4). Hydroperoxide levels in ox(1)LDL were only slightly above natLDL, whilst REM, TBARS and 7β-hydroxycholesterol in ox(1)LDL were similar.

Fig. 3. Time course of LDL oxidation. a: REM, measured on agarose gels. b: Levels of hydroperoxides, assayed in triplicate (data points are means) by the FOX method, for ox(3)LDL, ox(2)LDL and ox(1)LDL.

Fig. 4. Degree of oxidation of oxLDLs used for cell death studies. Oxidation was for 15 h. Levels of (a) hydroperoxides, measured by the FOX assay, (b) MDA equivalents, measured by the TBARS assay, (c) 7β-hydroxycholesterol, measured by GC and (d) REM, measured on agarose gels. Each histogram bar represents mean ± S.E.M., n = (a) 9–18, (b) 7–17, (c) 5–6, except for ox(1)LDL, 2, ox(1)LDL-sb, 2, and ox(1)LDL-pfb, 2, (d) 9–19. ANOVA P < 0.0001 for each of a–d. *Ox(2)LDL significantly different from ox(3)LDL. (a) P = 0.0209, (b) P = 0.026, (c) P = 0.0012, (d) P < 0.0001. Corresponding oxLDLs prepared with or without SB222657 or PFB pre-treatment were not significantly different from each other. OxLDLs were significantly different from natLDL (P < 0.05), except for (a) ox(1)LDL-sb, (b–d) ox(1)LDL, ox(1)LDL-sb and ox(1)LDL-pfb.
to natLDL (Fig. 4). Hydroperoxide results by the iodometric method (data not shown) were similar to the FOX assay.

The nucleosome ELISA measures cytoplasmic histone-associated DNA fragments (mono- and oligo-nucleosomes), apoptosis markers arising from internucleosomal cleavage as a result of activation of endogenous endonucleases and proteases. We also used acridine orange (AO) staining of HMM (fixed in ethanol–PBS 70:30 v/v) to measure apoptosis by fluorescence microscopy as percentage of HMM with morphologically condensed nuclear chromatin, another characteristic of apoptosis [33]. In principle, nucleic acid condensation can occur before DNA fragmentation. Such cell counts are, however, less quantitatively discriminating than the nucleosome ELISA. Assayed by AO staining, ox(2)LDL and ox(3)LDL appeared both very potent, respectively giving apoptotic cells as 88% and 87% of total cells, whilst natLDL and NA gave 7% and 4% respectively, all after 48 h incubation, and glio-toxin (3 μM, positive control) gave 88% apoptosis after 24 h. Ox(1)LDL was not assessed using AO.

Hydroperoxides detected in oxLDL, that are early-stage oxidation products, are more potent toxins in oxLDL than are the more advanced oxidation products such as aldehydes and oxysterols. Plotting hydroperoxide levels (FOX assay) in natLDL, ox(1)LDL, ox(2)LDL and ox(3)LDL vs. % LDH release measured in HMM (1 day in culture before starting experiments), after 48 h exposure to these oxLDLs or natLDL, revealed a highly significant positive correlation (least-squares linear regression $R^2 = 0.586$, $P < 0.0001$, $n = 51$). Weaker (though still significant) positive correlations with % LDH release were seen for β-hydroxycholesterol, MDA equivalents and REM. Hydroperoxide-rich ox(2)LDL might constitute a ‘loaded weapon’ that can decompose at the cell surface membrane and/or within the cell to give high local concentrations of aldehydes and free radicals. The results for ox(1)LDL suggest that a low, though above-background, level of hydroperoxides (and possibly other uncharacterised entities produced in the earliest stages of LDL oxidation) could trigger a low degree of apoptosis but not yet lead to loss of integrity of the cell surface membrane within the 48 h duration of the experiment. In contrast, for ox(2)LDL and ox(3)LDL, apoptosis and loss of cell surface membrane integrity (LDH release) go hand-in-hand by 48 h.

The hydroperoxides detected are probably derived from PUFAs (esterified and non-esterified) rather than from cholesterol (esterified and non-esterified), as our oxysterol assay for PUFAs (esterified and non-esterified) as our oxysterol assay for hydroperoxides was ‘reaction intermediates’ chemically, rising then declining as the oxidation progresses [16], whereas β-hydroxycholesterol (HMM and REM are cumulative markers of oxidation that rise and do not decline even for strong, prolonged oxidation [18].

Toxicity was not due to residual free Fe$^{2+}$ or Cu$^{2+}$ ions remaining in solution after the Chexel treatment of the oxLDLs, because controls consisting of solutions of Fe$^{2+}$ or Cu$^{2+}$ that we put through the whole of the preparation procedure, but omitting the LDL, were non-toxic to HMM. However, oxLDL-associated iron or copper ions, if not removed by Chexel, might play a role in toxicity, possibly in conjunction with lipid hydroperoxides in oxLDL. Advanced atherosclerotic lesions contain ‘catalytic’ iron and copper ions [40].

Lp-PLA$_2$ is a phospholipase that hydrolyses oxPC possessing an oxidised PUFA chain ester-linked in the sn-2 position, but does not hydrolyse non-oxidised PC. Lp-PLA$_2$ is a serine esterase, and is LDL-borne. Also, mature macrophages and to a lesser degree freshly isolated monocytes secrete Lp-PLA$_2$, identical to LDL-borne Lp-PLA$_2$ [41–43]. Pre-treatment of natLDL with SB222657, a specific Lp-PLA$_2$ inhibitor [19], diminished the toxicity and apoptosis induction that ensued when the LDL was mildly or moderately oxidised and then added to HMM (Figs. 1, 2 and 5). PFB, a broad-spectrum serine esterase/protease inhibitor, had a similar effect to SB222657 on toxicity but did not inhibit the corresponding apoptosis induction (Figs. 1 and 2). PFB might inhibit anti-apoptotic serine esterases/proteases, presumably within the cell. SB222657 and PFB did not act as antioxidants, either here (Fig. 4) or in earlier studies [19,20], and have no known chelating ability, consistent with their lack of effect on LDL oxidation per se (as opposed to hydrolysis).

Our results agree with evidence that Lp-PLA$_2$ can hydrolyse oxPC, whether possessing full-length PUFA-hydroperoxide chains or oxidatively fragmented PUFA chains, liberating lyso-PC and oxNEFA [19]. Lyso-PC was more toxic than an oxPC possessing an oxidatively fragmented PUFA chain, for HMM [20]. PC is the main phospholipid class in LDL. However, Lp-PLA$_2$ has rather permissive substrate requirements [44,45], so it might also hydrolyse oxidised forms of the less abundant LDL phospholipid classes, and maybe also hydrolyse oxidised tri- and di-acylglycerols.

The role of PPAR in oxLDL-induced cell death was explored using the PPAR$_\gamma$-preferential antagonist GW9662, which also inhibits PPAR$_\alpha$ and PPAR$_\beta$ less potently, binding irreversibly to PPAR [46]. Cells were pretreated for 20 h with 2 μM GW9662, which was replenished at 2 μM when the oxLDLs were added. GW9662 (2 μM) almost completely inhibits PPAR$_\gamma$ activation [46,47]. GW9662 (2 μM) was not toxic to HMM or SMC, and it did not significantly affect the toxicity of ox(2)LDL or ox(3)oxLDL for HMM (Fig. 5) or for SMC (data not shown; $P > 0.05$). GW9662 (2 μM) treatment of HMM tended to counteract the lowering of the oxLDL toxicity resulting from Lp-PLA$_2$ inhibition with SB222657, for HMM that had been cultured either for 4 days (Fig. 5) or for 1 day (data not shown) before starting experiments. Possibly, PPAR$_\gamma$ activation by intact (i.e. non-hydrolysed) oxPC triggers a cellular defence mechanism. Oxidised alkyl PC (the 0-alkyl linkage in the sn-1 position, and the oxidised chain ester-linked in the sn-2 position), a sub-class of oxPC in oxLDL, can specifically bind to and activate PPAR$_\gamma$
Ox(3)LDL-significantly-different-from-Ox(3)LDL

Ox(3)LDL significantly different from Ox(3)LDL.

References

Acknowledgements: We thank the British Heart Foundation (K.L.H.C., I.R.C., M.J.A.) and Cancer Research UK (M.J.A.) for financial support, Ms R. McNair and Dr C.M. Shanahan (Department of Medicine, University of Cambridge) for the kind gift of **SB222657** and **GW9662**. The authors thank Dr R. Ong (GlaxoSmithKline) for the kind gifts of **SB222657** and **GW9662**.