Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication, [U VI O2] 2+

Citation for published version:

Digital Object Identifier (DOI):
10.1021/acs.chemrev.9b00048

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemical Reviews

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Thermal and Photochemical Reduction and Functionalization Chemistry of the
Uranyl Dication, $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$

Bradley E. Cowie,a Jamie M. Purkis,a Jonathan Austin,b Jason B. Love* a and Polly L. Arnold* a

*Polly.Arnold@ed.ac.uk; jason.love@ed.ac.uk

a EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3FJ, UK

b National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE, UK

ABSTRACT:

The uranyl ion, $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$, possesses rigorously trans, strongly covalent, and chemically robust U-oxo groups. However, through the use of anaerobic reaction techniques, both one and two-electron reductive functionalization of the uranyl oxo groups have been discovered and developed. Prior to 2010, this unusual reactivity centered around the reductive silylation of the uranyl ion which entailed conversion of the oxo ligands into siloxy ligands, and reductive metalation of the uranyl oxo with Group 1 and f-block metals. This review surveys the large number of new examples of reductive functionalization of the uranyl ion that have been reported since 2010, including reductive borylation and alumination, metalation with d- or f-block metals, and new examples of reductive silylation. Other examples of oxo-group functionalization of $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$ that do not involve reduction, mainly with Group 1 cations, are also covered, along with new advances in the photochemistry of the uranyl(VI) ion that involve the transient formation of formally uranyl(V) $[\text{U}^{\text{V}}\text{O}_2]^+$ ion.

CONTENTS:

1. Introduction
2. $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$ Oxo Functionalization without Reduction
3. $\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}$ Reductive Functionalization
4. Further Functionalization of Uranyl(V) Complexes that Retain the U(V) Oxidation State
5. $\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{IV}}$ Reductive Functionalization
1. INTRODUCTION

The uranyl(VI) ion, $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$, is the dominant form of uranium in the environment. It is a linear cation which exhibits mutually trans and strongly covalent oxo groups, denoted here as U–O$_{\text{yl}}$. These U–O$_{\text{yl}}$ bonds are formally triple bonds, arising from one σ- and two π-bonds between 2p orbitals on the oxo-groups and hybrid orbitals (5f and 6d) on uranium.1 The result is a gas-phase bond energy of 604 kJ mol$^{-1}$ for the $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$ ion, making it thermodynamically stable and generally inert to chemical functionalization in the laboratory. However, the one-electron reduction of $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$ to $[\text{U}^{\text{V}}\text{O}_2]^+$ is readily achieved by minerals and microbes in the environment under anaerobic conditions.2 Under these conditions $[\text{U}^{\text{V}}\text{O}_2]^+$ disproportionates into $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$ and $[\text{U}^{\text{IV}}\text{O}_2]$, of which the latter is insoluble in water.4 In recent years, anaerobic reaction conditions have been deployed and proven effective for the isolation of both $[\text{U}^{\text{V}}\text{O}_2]^+$ (uranyl(V)) and $[\text{U}^{\text{IV}}\text{O}_2]$ (U(IV) dioxo) compounds through reductive functionalization processes (Scheme I). There is significant interest in studying uranyl(V) complexes due to the more Lewis-basic oxo groups showing an increased propensity to bridge to other metals. These interactions are often referred to as cation-cation interactions, CCIs, but the use of this specific term is not warranted as metal oxo-group basicity is common in d-block chemistry. This phenomenon is very rare in uranyl(VI) chemistry, but relatively common in heavier actinyl ($i.e.$ neptunium and plutonium) chemistry. Through the formation of oxo-bridged complexes,
U^V has the potential to disrupt nuclear waste separations such as in the PUREX process;\(^5\) consequently, the study of oxo-functionalised U^V complexes is spurred by understanding these interactions. With an estimated two million tonnes of depleted uranium waste globally,\(^6\) maximizing the efficiency of waste remediation processes is of paramount importance to the nuclear industry. While actinyl compounds require specialized containment procedures to handle, their chemistry can be modelled through the study of uranyl(V) compounds in a standard laboratory (and therefore more convenient and less costly) environment. Additionally, understanding the processes by which various elements reductively functionalize water-soluble uranyl ions to insoluble uranium(IV) oxides is also relevant to the mineral and microbial-initiated reductions that occur in the environment, for example in iron-containing strata such as goethite\(^7\) or with *geobacter* microbes.\(^8\) The chemistry of such a traditionally inert oxo group is also of great academic interest, since its lack of reactivity contrasts so strongly with the lighter Group 6 congeners such as the chromyl ion.

The uranyl(V) ion is also a key intermediate in photochemical processes involving the uranyl(VI) ion. Solutions containing $[U^{VI}O_2]^{2+}$ are photochemically active when exposed to ultraviolet (UV) and near-UV light sources (*ca.* 420 nm), generating $[*UO_2]^{2+}$, a long-lived (\leq µs) and highly oxidising (*ca.* +2.6 V, comparable to F_2) excited state of uranyl.\(^9,\,^{10}\) Subsequent ligand-to-metal charge transfer (LMCT) that arises from $U(5f)\leftrightarrow O(2p)$ transitions generates the $[U^{V}O_2]^{+}$ intermediate which contains an extremely reactive oxyl radical, O^\bullet (Scheme 1b). This intermediate may generally be quenched by H-atom abstraction (HAA) if the quencher is aliphatic (to give a functionalized $[O=U^V-OH]^{2+}$ motif),\(^{11-13}\) or by electron transfer if the quencher is unsaturated.\(^{14-19}\) The highly oxidizing nature of photoactivated $U^{VI}O_2^{2+}$ has previously been exploited in the degradation of volatile organic compounds, VOCs, such as methanol,\(^{20}\) and many other applications, including in metal ion sensing and biochemistry, have been developed since the last reviews appeared in 2010 and 2013.\(^{9,\,^{10,21,22}}\)
Scheme 1. (a) Thermal and (b) photochemical reduction and functionalization of the uranyl ion, [U\(^{VI}\)O\(_2\)]\(^{2+}\).

While several generalized reviews of the chemistry of the uranyl ion have been published in recent years, the last review dedicated to oxo-group reactivity of the uranyl cation was published in 2010.\(^{10,22-24}\) This current review therefore focuses on the significant advances that have occurred in reductive functionalization of the uranyl ion since 2010, including reductive borylation and alumination, metalation with \(d\)-block and \(f\)-block metals, and substitution of the oxo-functionalized groups coordinated to uranyl(V) complexes by Group 1 and \(d\)-block metals, stannyl, silyl and alkyl groups. Emphasis is placed on the synthesis and reactivity of these compounds. Discussions of the more complex physical properties of these compounds such as magnetism and gas-phase uranyl-oxo reactivity\(^{25,26}\) are beyond the scope of this review. There have also been numerous reports of the coordination chemistry of newly designed ligands with the uranyl ion, and unless those complexes possess activated/functionalized U–O\(_4\)l groups, they are beyond the scope of this review. We also note recent developments in the computational chemistry of the actinides, which possess complex electronic structures and are difficult to model effectively; interested readers are referred to recent contributions from Dolg\(^{27}\) and Kaltsoyannis,\(^{28}\) and we will not cover these issues further in this review. For completeness we include a section on functionalized uranyl(VI) complexes for comparison, excluding hydrogen-bonded and halogen-bonded uranyl complexes. We use the term “thermal” to represent any non-photochemical means of generating a uranyl(V) or U(IV) dioxo species. This review is therefore divided into sections that cover: oxo-functionalization reactions of uranyl(VI) complexes that occur without reduction; one-electron uranyl(VI)\(\rightarrow\)uranyl(V) reduction reactions and further reactions of these that do not involve uranium redox; two-electron reduction and
sequential uranyl(VI) \rightarrow U(IV) dioxo processes; a survey of the solid-state structures and OUO vibrational stretching frequencies of $[U^{VI}O_2]^{2+}$, $[U^{V}O_2]^+$ and $[U^{IV}O_2]$ complexes reported since 2010; and photochemical reactions of uranyl(VI) complexes that involve uranyl(V) intermediates.

2. $[U^{VI}O_2]^{2+}$ OXO FUNCTIONALIZATION WITHOUT REDUCTION

The poor Lewis basicity of the uranyl(VI) oxo groups means that their functionalization is considerably rarer than that of the UV or UIV analogues. Current examples are limited to examples of Lewis adduct formation with the highly electropositive cations Li$^+$ or K$^+$ such as U^{VI}–O$_2$–Li$^+$ adduct formation in [Li(py)$_2$][UVIO$_2${N(SiMe$_3$)$_2$}$_3$] (1) from 1 equiv. of [UVIO$_2${N(SiMe$_3$)$_2$}$_2$(py)$_2$] (2-py) and $\text{LiN(SiMe$_3$)$_2$}$; 29 [Li(dme)$_2$]$_2$[UVIO$_2$(CH$_2$SiMe$_3$)$_4$] (3) from [UVIO$_2$Cl$_2$(THF)$_2$] (4-THF) and 4 equiv. of Li(CH$_2$SiMe$_3$) in the synthesis of a rare UVIO$_2$+-alkyl “-ate” complex; 30 [Li(THF)$_2$][UVIO$_2${N(SiMe$_3$)$_2$}$_2$(tmtaa)] (5; tmtaa = dibenzotetramethyl-tetraaz[14]annulene) and [Li(THF)$_3$][Li(THF)$_2$][(UVIO$_2$Cl$_2$)(tmtaa)] (6) from Li$_2$(tmtaa) and [UVIO$_2${N(SiMe$_3$)$_2$}$_2$(THF)$_2$] (2-THF), 31 and Li$_2$(tmtaa) and 2 equiv. of 4-THF, 32 respectively, to target the isolation of the as-yet unseen “cis-uranyl”; [Li(THF)(TMEDA)][UVIO$_2$(NCiBu)$_3$] (7) and [Li(THF)(OEt)$_2$]$_2$[UVIO$_2$(NCiBuPh)$_4$] (8) from 4-THF and 6 equiv. of LiNCiBu or 8 equiv. of LiNCiBuPh in THF, respectively, as the first examples of uranyl ketimide complexes (Figure 1). 33 Further, Li$^+$-functionalization has also been seen in [Li(THF)$_3$][UVIO$_2${N(HSiMe$_3$)}(Bu)$_3$] (9), 34 in the uranyl(VI) Pacman complex, [UVIO$_2$(S)(HLiL$_{Me}$)$_3$] (S = THF (10-THF), py (10-py)), formed by treating [UVIO$_2$(S)(H$_2$L$_{Me}$)] (S = THF (11-THF), py (11-py)) with 1 equiv. of LiR (R = H, NH$_2$, NiPr$_2$, N(SiMe$_3$)$_2$, CPh$_3$, C$_5$H$_5$; H$_4$L$_{Me}$ = a Pacman-shaped macrocyclic Schiff-base ligand with methyl substituents on the meso-carbon atoms and a dimethylphenylene hinge); 35 and in [Li(MeIm)][UVIO$_2$(Ar$_2$naenac)(C$_1$ carb(C$_4$H$_8$N$_2$)$_2$] (12; MeIm = 1-methylimidazole, Ar$_2$naenac = ArN(Me)CHC(Me)NAr, Ar = 2,6-iPr$_2$C$_6$H$_3$), which was synthesized by treating 0.5 equiv. of [UVIO$_2$Cl(Ar$_2$naenac)] (13) with 2 equiv. of 2-lithio-1-methylimidazole in toluene/THF. Compound 12 features imidazole coordination to the UVI center through the central carbon atoms rather than the
flanking nitrogen atoms (Figure 1); the donor atom can be switched from the imidazole carbon to the nitrogen atoms by treatment of 12 with MCl₂ (M = Fe, Co), affording [MCl(MeIm)][U⁶⁺O₂(Ar₂nacnac)(κ¹⁻N-C₄H₅N₂)_2] (M = Fe (14), Co (15)).³⁶

Figure 1. Examples of Li-functionalized [U⁶⁺O₂]²⁺ complexes.²⁹⁻³⁶

Adducts between K⁺ and uranyl(VI), i.e. U⁶⁺-O₃⁻⁻K⁺ have also been reported in an effort to further manipulate the bonding and reactivity of the uranyl dication. Starting from 4-THF, 6 equiv. of the fluorinated diarylamide KNPhFpy (PhF = C₆F₅) or 8 equiv. of [KNArFPh(THF)₀.₅] (ArF = C₆H₃-3,5-(CF₃)₂) reacts with 4 in THF to produce [{K(THF)₃}{U⁶⁺O₂(NPhFpy)₃}]ₙ (16) and [K(η⁶-
These complexes possess non-covalent π-K⁺ and F-K⁺ interactions in their solid-state structures, in addition to U^{VI}-O₂⁻⁻⁻⁻K⁺ interactions.³⁷

Figure 2. Examples of K⁺-functionalized [U^{VI}O₂]²⁺ complexes; Ar^F = C₆H₃-3,5-(CF₃)₂.³⁷

Adduct formation between K⁺ and uranyl(VI) has also been observed in a bis(uranyl(VI)) Pacman complex, [K(py)₃][K(py)]₂[(U^{VI}O₂)₂(μ-O₂)(L^{Me})]₂ (18), which is synthesized via oxidation of the bis(uranyl(V)) Pacman complex, {[K(py)₃][K(py)][(U^{V}O₂)₂(L^{Me})]₂ (19-py; see Scheme 48 in Section 6 for the synthesis of 19-py), using dry O₂ in pyridine; both uranyl(V) ions have been oxidized to uranyl(VI) and a peroxide ligand bridges the two U^{VI} centers (Scheme 2). Alternatively, 19-py reacts with pyridine-N-oxide to form [K(py)₃][K(py)]₂[(U^{VI}O₂)₂(μ-O)(L^{Me})]₂ (20), in which an oxo ligand bridges the two U^{VI} centers (Scheme 2).³⁸

Scheme 2. Oxidation of [K(py)₃][K(py)]₂[(U^{V}O₂)₂(L^{Me})]₂ (19-py) to [K(py)₃][K(py)]₂[(U^{VI}O₂)₂(μ-O₂)(L^{Me})]₂ (18) and [K(py)₃][K(py)]₂[(U^{VI}O₂)₂(μ-O)(L^{Me})]₂ (20) using dry O₂ and C₅H₅NO, respectively. The Pacman macrocycle, H₄L^{Me}, and an abbreviated depiction of the bis(uranyl(V)) Pacman complex are provided at the top of the Scheme.³⁸
Adduct formation between K\(^+\) and uranyl(VI) has also been observed in
\([\{U^{VI}\text{O}_2(\text{OH})\text{K}(\text{C}_6\text{H}_6)(\text{H}_2\text{L}_\text{Me})\}_2]\) (21), which is formed by treating \([U^{VI}\text{O}_2(\text{THF})(\text{H}_2\text{L}_\text{Me})]\) (11-THF) with KH in THF (Scheme 3). Complex 21 likely forms as a result of KOH impurities in the KH, or decomposition of \([U^{VI}\text{O}_2(\text{THF})(\text{K}_2\text{L}_\text{Me})]\) (22) by reaction with adventitious H\(_2\)O. Compound 21 may also be formed directly by treating 11-THF with dry KOH in THF (Scheme 3). Complex 21 is a uranyl(VI)/uranyl(VI) dimer formed via bridging K\(^+\)···[U\(^{VI}\)O\(_2\)]\(^{2+}\) interactions involving the exogeneous oxo ligand, referred to as O\(_{\text{exo}}\). Dissolving 21 into a mixture of THF and benzene followed by crystallization results in the formation of \([U^{V}\text{O}_2(\text{OH})\text{K}(\text{THF})_2(\text{H}_2\text{L}_\text{Me})]\) (23; Scheme 3). In this case, the K\(^+\) cation is coordinated to the endogenous oxo ligand of the uranyl(VI) ion, referred to as O\(_{\text{endo}}\). Furthermore, coordination of K\(^+\) to THF in 23 results in cleavage of the uranyl(VI)/uranyl(VI) dimer, yielding a monomeric uranyl(VI) complex. The U–O bond lengths in 21 are nearly equal within s.u.s (1.796(2), 1.803(2) Å), whereas one of the U–O bond lengths in 23 is elongated relative to the other (1.788(6), 1.821(6) Å). In both cases, the elongated U–oxo bond corresponds to the oxo ligand coordinated to the K\(^+\) cation. Furthermore, complexes 21 and 23 give rise to asymmetric OUO stretching frequencies of 894 and 895 cm\(^{-1}\), respectively, which are at lower frequency relative to the unactivated uranyl(VI) analogue, 11-THF (908 cm\(^{-1}\)), indicating a decrease of electron density at the uranyl ion in these complexes.
Scheme 3. Synthesis of \([\{U^{VI}O_2(OH)K(C_6H_5)(H_2L^Me)\}_2\] (21) either by treating \([U^{VI}O_2(THF)(H_2L^Me)] (11-THF)\) with KH in THF, or with dry KOH in THF. \([U^{V}O_2(OH)K(THF)_2(H_2L^Me)] (23)\) is formed by dissolving 21 in THF/benzene. A depiction of the uranyl(VI) Pacman complex 11 is given on the left of the Scheme, in which O_{exo} and O_{endo} have been labelled (S = coordinating solvent).

\[U^{VI}O_2(THF)(H_2L^Me)\] \([\{U^{VI}O_2(OH)K(C_6H_5)(H_2L^Me)\}_2\] (21)

\[KH, 78^\circ C\]

\[dry KOH, 25^\circ C\]

\[THF\]

\[S = py (11-py)\]

\[S = THF (11-THF)\]

Similarly to the tris- and tetrakis-ketimide complexes \([Li(THF)(TMEDA)][U^{VI}O_2(NC'Bu_2)_3] (7)\) and \([Li(THF)(OEt)_2]_2[U^{VI}O_2(NC'BuPh)_4] (8; see Figure 1),\) significant elongation of the U–O bond lengths is often observed on moving from neutral to ‘ate’ U^{VI} complexes. For example, the U^{VI} K^+⋯[OU^{VI}O]^2+ - containing ‘ate’ complex K_2[K(OEt)_2]_2[U^{VI}O_2(dipp AP)_2]_2 (24; dipp AP = 4,6-di-tert-butyl-2-\{(2,6-diisopropylphenyl)amido\}phenolate) (prepared from \([U^{VI}O_2(dipp ISQ)_2(THF)] (25; dipp ISQ = 4,6-di-tert-butyl-2-\{(2,6-diisopropylphenyl)imino\}semiquinone) by reduction with 2 equiv. of KC_8 (Scheme 4)) has U–O bond lengths of 1.824(3) and 1.834(3) Å. These are significantly longer than in the neutral U^{VI} precursor 25 (1.762(4) and 1.786(3) Å), and likely arises from increased π-donation to the uranium center, as well as the electrostatic K^+⋯[OU^{VI}O]^2+ adduct formation.\) The role of increased ligand donor ability in U–O bond length elongation was highlighted by removal of the oxo-coordinated K^+ cations from 24 using 2 equiv. of 18-crown-6 to make \([K(THF)_2(18-c-6)]_2[U^{VI}O_2(dipp AP)_2(THF)] (26).\) The U–O bond lengths (1.812(2) and 1.814(2) Å) of the unfunctionalized uranyl(VI) unit in 26 are shorter than in the K-coordinated 24 but still longer than...
in the neutral 25,41 comparing well with those in the tris- and tetrakis-ketimide complexes 7 and 8, respectively.33

Compound 25 also reacts with either 4 equiv. of B-chlorocatecholborane (Cl-Bcat) in THF to afford [UIVCl4(dippIQ)(THF)]2 (27; dippIQ = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)imino}quinone) and 2 equiv. of O(Bcat), or with 4 equiv. of pivaloyl chloride (ClCO(tBu)) in benzene to yield [UIVCl4(dippIQ)]2 (28) and 2 equiv. of O(CO(tBu)).

Scheme 4. Synthesis of K2[K(OEt2)2][UVI02(dippAP)]2 (24; dippAP = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)amido}phenolate) from [UVI02(dippISQ)(THF)] (25; dippISQ = 4,6-di-tert-butyl-2-{(2,6-diisopropylphenyl)imino}semiquinone) and 2 equiv. of KC8 (dipp = 2,6-di-isopropylphenyl).41

The contact- or separated-ion pairs, [M][UVI02{N(SiMe3)}]3 (M = K (29), Rb (30), Cs (31)), [M(THF)x][UVI02{N(SiMe3)}]3 (M = Li, x = 2 (32) or 4 (33); M = Na, x = 2 (34) or 6 (35); M = K, x = 6 (36)), [M(2,2,2-crypt)][UVI02{N(SiMe3)}]3 (M = Li (37), Na (38), K (39), Rb (40), Cs (41)) and [M(L)2][UVI02{N(SiMe3)}]3 (M = Li, L = 12-c-4 (42); M = Na, L = 15-c-5 (43); M = K, L = 15-c-5 (44); M = Rb, L = 15-c-5 (45); M = Cs, L = 15-c-5 (46), -c- = -crown-), have also recently been reported, formed by the interaction of Group 1 cations with the uranyl bis(silyl)amide anion, [UVI02{N(SiMe3)}]3.34,42,43 It was stated that the oxophilicity of Li+ versus the heavier Group 1 congeners is the key driver in decreasing UVI–O3l bond lengths descending the series. However, it should be noted that while the UVI–O3l bond length for the Li+ functionalized compound is significantly longer than the remainder in the series (1.88(1) Å), these differences are statistically
insignificant for the remainder of the Group 1 cations as they range from 1.810(5) Å for Na$^+$ to 1.804(3) Å and 1.80(3) Å for K$^+$ and Rb$^+$, respectively.34,42,43

The only examples of non-group 1 functionalized $[\text{U}^{\text{VI}}\text{O}_2]^{2^+}$ derive from coordination of Pb$^{\text{II}}$ in the bottom N_4-donor compartment of the mono(uranyl) “Pacman” complex, 11-THF or 11-py. This produces $[\text{U}^{\text{VI}}\text{O}(\text{OPb})(\text{THF})(\text{L}^\text{Me})]$ (47-THF), $[\text{U}^{\text{VI}}\text{O}\{\text{OPb(}py)\}\{\text{py}\}(\text{L}^\text{Me})]$ (47-py) or $[\text{U}^{\text{VI}}\text{O}\{\text{OPb(}py)\}\{\text{Op}y\}(\text{L}^\text{Me})]$ (48; Scheme 5) in which the U$^{\text{VI}}$–O bond lengths range from 1.759(7)-1.853(8) Å. These bond distances are similar to other U$^{\text{VI}}$–O$_\text{yl}$ functionalized complexes, with the exception being the longer, 1.853(8) Å bond for 48, which is consistent with its IR spectrum ($\nu[\text{OUO asym.}] = 893$ cm$^{-1}$). No oxo-coordination to Pb$^{2^+}$ was reported for the larger anthracenyl-hinged macrocycle, H$_4$LA (see Scheme 45 in Section 5 for a depiction of the H$_4$LA ligand).44

Scheme 5. Synthesis of complexes 47 and 48.44

Table 1. Structural and spectroscopic data for unfunctionalized uranyl(VI) complexes reported since 2010. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy. soln. = solution-state. The compounds are numbered within the table according to how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[UO₂{N(SiMe₂)₂]:2(py)]: (2-py)</td>
<td>1.779(3)</td>
<td>–</td>
<td>170.5(2)</td>
<td>–</td>
<td>935 (asym.)</td>
<td>29, 45</td>
</tr>
<tr>
<td>[UO₂(THF)(H₂L₃Mg)] (11-THF)</td>
<td>1.787(3), 1.770(3)</td>
<td>1.780(2)</td>
<td>–</td>
<td>908 (asym.)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>[FeCl(Meim)][UO₂(Ar₃nacnac)(k⁻¹-N-C₄H₄N₃)].(THF) (14)</td>
<td>1.777(4), 1.780(4)</td>
<td>–</td>
<td>177.2(2)</td>
<td>–</td>
<td>911 (asym.)</td>
<td>36</td>
</tr>
<tr>
<td>[CoCl(Meim)][UO₂(Ar₃nacnac)(k⁻¹-N-C₄H₄N₃)].(THF) (15)</td>
<td>1.767(5), 1.771(4)</td>
<td>–</td>
<td>178.0(2)</td>
<td>–</td>
<td>911 (asym.)</td>
<td>36</td>
</tr>
<tr>
<td>UO₂(Crypt) (25)</td>
<td>1.762(4), 1.786(3)</td>
<td>–</td>
<td>175.4(2)</td>
<td>–</td>
<td>Unassigned</td>
<td>41</td>
</tr>
<tr>
<td>[K(THF)₅(18-c-6)][UO₂(OAc)₅(AP)(THF)] (26)</td>
<td>1.812(2), 1.814(2)</td>
<td>–</td>
<td>174.5(1)</td>
<td>–</td>
<td>Unassigned</td>
<td>41</td>
</tr>
<tr>
<td>[Li(THF)₃][UO₂{N(SiMe₂)₃}]:3(33)</td>
<td>1.784(4)</td>
<td>–</td>
<td>179.8(2)</td>
<td>–</td>
<td>969 (asym., soln.)</td>
<td>42</td>
</tr>
<tr>
<td>[Na(THF)₃][UO₂{N(SiMe₂)₃}]:3 (35)</td>
<td>1.791(3)</td>
<td>–</td>
<td>179.8(1)</td>
<td>–</td>
<td>973 (asym., soln.)</td>
<td>42</td>
</tr>
<tr>
<td>[K(THF)₃][UO₂{N(SiMe₂)₃}]:3 (36)</td>
<td>1.786(3)</td>
<td>–</td>
<td>179.6(1)</td>
<td>–</td>
<td>973 (asym., soln.)</td>
<td>42</td>
</tr>
<tr>
<td>[Li(2,2,2-crypt)][UO₂{N(SiMe₂)₃}]:3 (37)</td>
<td>1.797(3)</td>
<td>–</td>
<td>179.0(2)</td>
<td>–</td>
<td>964 (asym.), 809 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Na(2,2,2-crypt)][UO₂{N(SiMe₂)₃}]:3 (38)</td>
<td>1.772(8)</td>
<td>–</td>
<td>179.8(4)</td>
<td>–</td>
<td>963 (asym.), 811 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[K(2,2,2-crypt)][UO₂{N(SiMe₂)₃}]:3 (39)</td>
<td>1.801(2)</td>
<td>–</td>
<td>178.5(9)</td>
<td>–</td>
<td>963 (asym.), 809 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Rb(2,2,2-crypt)][UO₂{N(SiMe₂)₃}]:3 (40)</td>
<td>1.801(1)</td>
<td>–</td>
<td>180</td>
<td>–</td>
<td>964 (asym.), 810 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Cs(2,2,2-crypt)][UO₂{N(SiMe₂)₃}]:3 (41)</td>
<td>1.801(2)</td>
<td>–</td>
<td>180</td>
<td>–</td>
<td>961 (asym.), 809 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Li(12-c-4)][UO₂{N(SiMe₂)₃}]:3 (42)</td>
<td>1.787(4)</td>
<td>–</td>
<td>178.8(2)</td>
<td>–</td>
<td>962 (asym.), 808 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Na(15-c-5)][UO₂{N(SiMe₂)₃}]:3 (43)</td>
<td>1.792(2)</td>
<td>–</td>
<td>178.0(8)</td>
<td>–</td>
<td>960 (asym.), 810 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[K(15-c-5)][UO₂{N(SiMe₂)₃}]:3 (44)</td>
<td>1.79(1)</td>
<td>–</td>
<td>180</td>
<td>–</td>
<td>964 (asym.), 811 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Rb(15-c-5)][UO₂{N(SiMe₂)₃}]:3 (45)</td>
<td>1.788(2)</td>
<td>–</td>
<td>178.7(2)</td>
<td>–</td>
<td>964 (asym.), 805 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[Cs(15-c-5)][UO₂{N(SiMe₂)₃}]:3 (46)</td>
<td>1.789(3)</td>
<td>–</td>
<td>178.0(2)</td>
<td>–</td>
<td>964 (asym.), 804 (sym.)</td>
<td>42</td>
</tr>
<tr>
<td>[UO₂(OTf)(Ar₃nacnac)(OEt)].(THF) (57)</td>
<td>1.750(6), 1.746(6)</td>
<td>–</td>
<td>176.5(3)</td>
<td>–</td>
<td>940 (sym.)</td>
<td>46</td>
</tr>
<tr>
<td>[UO₂{N(SiMe₂Ph₂)₂}:2(py)]:2(py) (69)</td>
<td>1.782(3)</td>
<td>–</td>
<td>180.0</td>
<td>–</td>
<td>Unassigned</td>
<td>45</td>
</tr>
<tr>
<td>[UO₂(THF)(H₂L₃Mg)] (89-THF)</td>
<td>1.768(3), 1.790(3)</td>
<td>–</td>
<td>175.1(2)</td>
<td>–</td>
<td>907 (asym.)</td>
<td>47</td>
</tr>
<tr>
<td>[UO₂(dpae)] (120)</td>
<td>1.75(3)</td>
<td>–</td>
<td>176.9(7)</td>
<td>–</td>
<td>913 (asym.)</td>
<td>48</td>
</tr>
<tr>
<td>[UO₂(SCS):py)]:2(py) (126)</td>
<td>1.776(5), 1.787(5)</td>
<td>–</td>
<td>171.8(2)</td>
<td>–</td>
<td>920 (asym.)</td>
<td>49</td>
</tr>
<tr>
<td>[UO₂(Measaldien)] (150)</td>
<td>1.779(3), 1.784(3), 1.770(3), 1.786(3)</td>
<td>–</td>
<td>173.3(2), 174.1(1)</td>
<td>–</td>
<td>Unassigned</td>
<td>50</td>
</tr>
<tr>
<td>[UO₂(C₅l₅)₅]:3 (152)</td>
<td>1.757(9), 1.785(8)</td>
<td>–</td>
<td>178.4(4)</td>
<td>–</td>
<td>Unassigned</td>
<td>51</td>
</tr>
<tr>
<td>[UO₂(C₅l₅)₅]:3(µ-O)] (153)</td>
<td>1.791(1), 1.801(1), 1.801(1), 1.821(1), 1.811(1), 1.821(1), 1.79(1), 1.79(1)</td>
<td>–</td>
<td>176.2(5), 172.8(5), 175.2(5), 173.0(6)</td>
<td>–</td>
<td>Unassigned</td>
<td>51</td>
</tr>
<tr>
<td>[UO₂(salen)·Bu)] (167)</td>
<td>1.778(3)</td>
<td>–</td>
<td>177.1(2)</td>
<td>–</td>
<td>Unassigned</td>
<td>52</td>
</tr>
<tr>
<td>[UO₂(PhCOO):py)]:2(py) (176)</td>
<td>1.769(5)</td>
<td>–</td>
<td>180.0</td>
<td>–</td>
<td>Unassigned</td>
<td>53</td>
</tr>
<tr>
<td>[Cp*UO₂(AspDil₅)] (181)</td>
<td>1.79(5), 1.79(5)</td>
<td>–</td>
<td>168.3(2)</td>
<td>–</td>
<td>876 (asym.), 788 (sym.)</td>
<td>54</td>
</tr>
<tr>
<td>[Cp*UO₂(AspDil₅):2(py)]:2(py) (182)</td>
<td>1.77(1)</td>
<td>–</td>
<td>167.4(4)</td>
<td>–</td>
<td>878 (asym.), 787 (sym.)</td>
<td>54</td>
</tr>
<tr>
<td>Chemical Formula</td>
<td>ν (cm⁻¹)</td>
<td>α (°)</td>
<td>β (°)</td>
<td>ν (cm⁻¹)</td>
<td>α (°)</td>
<td>β (°)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>[CoCl₂L'] (205)</td>
<td>1.766(4), 1.763(4)</td>
<td>–</td>
<td>175.5(2)</td>
<td>–</td>
<td>920</td>
<td>(asym.)</td>
</tr>
<tr>
<td>CoCl₂ (208)</td>
<td>1.772(3), 1.779(3)</td>
<td>–</td>
<td>176.5(1)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[(UO₂(py)₄)L₃] (209)</td>
<td>1.747(4), 1.779(4)</td>
<td>–</td>
<td>174.0(2)</td>
<td>–</td>
<td>912 (asym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₃(thacacnac)₂] (220)</td>
<td>1.770(3)</td>
<td>–</td>
<td>180.0</td>
<td>–</td>
<td>907 (asym.), 823 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₃L'] (B₃[3,5-(CF₃)₂-C₆H₃]₄) (229)</td>
<td>1.753(2), 1.762(2)</td>
<td>–</td>
<td>173.6(1)</td>
<td>–</td>
<td>952 (asym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OTf)(L')] (230)</td>
<td>1.763(3), 1.759(3)</td>
<td>–</td>
<td>176.5(1)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(THF)]L₆ (240)</td>
<td>1.773(8), 1.816(9)</td>
<td>–</td>
<td>177.6(4)</td>
<td>–</td>
<td>908 (asym.), 850 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[[K(py)₃][UO₂(C₆H₄COO)₃]] (244)</td>
<td>1.773(7)</td>
<td>179(1)</td>
<td>Unassigned</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[K(THF)]₃[UO₂(NPh₂)₃(THF)]</td>
<td>1.770(6), 1.772(5)</td>
<td>–</td>
<td>177.0(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[K(THF)]₃[UO₂(NPhPh₃)₄]</td>
<td>1.765(3)</td>
<td>–</td>
<td>180.0(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[K(18-c-6)(dme)]₃[UO₂(NAr²Ph₄)₄]</td>
<td>1.789(4), 1.792(4)</td>
<td>–</td>
<td>178.9(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OTf)₃(NAr²N₄)]</td>
<td>1.765(4), 1.768(5)</td>
<td>–</td>
<td>179.9(2)</td>
<td>–</td>
<td>937 (asym.), 843 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂Cl₂(N₄)]</td>
<td>1.776(5), 1.785(5)</td>
<td>–</td>
<td>164.1(3)</td>
<td>–</td>
<td>813 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂Cl₂(N₄)]₉</td>
<td>1.779(6)</td>
<td>–</td>
<td>168.2(3)</td>
<td>–</td>
<td>815 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OTf)₃(N₄)]₉</td>
<td>1.759(6), 1.781(6)</td>
<td>–</td>
<td>162.8(3)</td>
<td>–</td>
<td>833 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OTf)(THF)]₉(N₄)₉(OTf)</td>
<td>1.761(1), 1.771(1)</td>
<td>–</td>
<td>161.7(5)</td>
<td>–</td>
<td>831 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OGe(THF))(THF)</td>
<td>1.757(2), 1.762(2)</td>
<td>–</td>
<td>175.2(1)</td>
<td>–</td>
<td>925 (asym.), 928/910 (soln.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OSn(THF))(THF)</td>
<td>1.781(3), 1.782(3)</td>
<td>–</td>
<td>175.6(2)</td>
<td>–</td>
<td>921 (asym.), 927/911 (soln.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OPb(THF))(THF)</td>
<td>1.761(4), 1.764(4), 1.767(4), 1.780(4)</td>
<td>–</td>
<td>174.6(2), 175.1(2)</td>
<td>–</td>
<td>916 (asym.), 905 (soln.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OPb(THF))(Opy)</td>
<td>1.779(7), 1.787(7)</td>
<td>–</td>
<td>178.5(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(OPb(py))(Opy)</td>
<td>1.776(4), 1.779(4)</td>
<td>–</td>
<td>178.8(1)</td>
<td>–</td>
<td>902 (asym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(tmmtaaH)₃N(SiMe₃)₃]</td>
<td>1.787(5), 1.789(4)</td>
<td>–</td>
<td>174.0(2)</td>
<td>–</td>
<td>805 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(tmmtaaH)₃]</td>
<td>1.752(7)</td>
<td>–</td>
<td>180</td>
<td>–</td>
<td>805 (sym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(η₅-C₅H₅)₉]</td>
<td>1.778(2), 1.790(2)</td>
<td>–</td>
<td>175.83(9)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(η₅-C₅H₅)]</td>
<td>1.789(3), 1.780(3)</td>
<td>–</td>
<td>175.9(1)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(η₅-C₅H₅)]</td>
<td>1.786(5), 1.774(6)</td>
<td>–</td>
<td>180</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[Li(12-c-4)][UO₂(N(HSiMe₂)(Bu)₃]</td>
<td>1.787(6)</td>
<td>–</td>
<td>179.2(5)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(µ-Bu-bipy)][N(HSiMe₂)(Bu)₃]</td>
<td>1.748(5), 1.803(5)</td>
<td>–</td>
<td>175.8(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(BIPM₃NS)(DMAP)]₂</td>
<td>1.794(2), 1.785(2)</td>
<td>–</td>
<td>167.2(1)</td>
<td>–</td>
<td>860 (asym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(Htrensal)]</td>
<td>1.783(3), 1.787(3)</td>
<td>–</td>
<td>173.5(1)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(trensal)]</td>
<td>1.789(2), 1.785(2)</td>
<td>–</td>
<td>175.5(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(dpaeac)(OH₂)]</td>
<td>1.777(4), 1.780(4)</td>
<td>–</td>
<td>170.7(2)</td>
<td>–</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>[UO₂(SCHS)(OTf)(OEt)]</td>
<td>1.759(8), 1.764(8)</td>
<td>–</td>
<td>177.8(4)</td>
<td>–</td>
<td>929 (asym.)</td>
<td></td>
</tr>
<tr>
<td>[UO₂(SCHS)₂]</td>
<td>1.767(2), 1.769(2)</td>
<td>–</td>
<td>178.8(1)</td>
<td>–</td>
<td>916 (asym.)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Structural and spectroscopic data for functionalized uranyl(VI) complexes reported since 2010. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy. soln. = solution-state; the compounds are numbered within the Table according to how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Sym. (cm⁻¹)</th>
<th>Asym. (cm⁻¹)</th>
<th>Assign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{UO}_2\text{Cl}_2(\text{DPPFO}_2)])</td>
<td>1.764(4),</td>
<td>176.9(2)</td>
<td>916 (asym.)</td>
</tr>
<tr>
<td></td>
<td>1.760(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\text{UO}_2(\text{dipy}^{\text{cyclo})}_2(\text{THF})])</td>
<td>1.765(5),</td>
<td>170.9(2),</td>
<td>963 (asym., DMAP adduct)</td>
</tr>
<tr>
<td></td>
<td>1.768(5),</td>
<td>177.4(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.758(5),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.755(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\text{UO}_2(\text{dipy}^{\text{anis})}_2(\text{THF})])</td>
<td>1.759(4),</td>
<td>176.8(2),</td>
<td>963 (asym., DMAP adduct)</td>
</tr>
<tr>
<td></td>
<td>1.764(4),</td>
<td>170.5(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.762(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\text{UO}_2(\text{dipy}^{\text{Fc})}_2(\text{THF})])</td>
<td>1.773(3)</td>
<td>177.0(2)</td>
<td>963 (asym., DMAP adduct)</td>
</tr>
<tr>
<td>([\text{UO}_2(\text{dipy}^{\text{Mes})}_2(\text{THF})])</td>
<td>1.776(4),</td>
<td>176.9(2)</td>
<td>963 (asym.)</td>
</tr>
<tr>
<td></td>
<td>1.764(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\text{UO}_2(\text{OTf})_2(\text{dippIQ})(\text{THF})])</td>
<td>1.745(5)</td>
<td>179.1(2)</td>
<td>Unassigned</td>
</tr>
<tr>
<td>([\text{UO}_2\text{Cl}(\text{dipSO})_2(\text{dippIQ})])</td>
<td>1.757(3),</td>
<td>175.1(1)</td>
<td>Unassigned</td>
</tr>
<tr>
<td></td>
<td>1.758(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Footnotes: * reassigned or reclassified as unassigned in the light of more recent information on this and related complexes since the original publication appeared. The compounds are numbered within Table 1 according to how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Li(py)₂][UO₂[N(SiMe₃)₂]₂] (1)</td>
<td>1.81(1), 1.88(1)</td>
<td>1.83(3)</td>
<td>178.2(5)</td>
<td>169(2)</td>
<td>935 (asym.), 969 (sym., soln.) 799 (sym.)</td>
<td>29,42</td>
</tr>
<tr>
<td>[Li(dme)₃][UO₂(CH₂SiMe₃)₃] (3)</td>
<td>1.885(4)</td>
<td>1.87(1)</td>
<td>180</td>
<td>141.3(4)</td>
<td>Unassigned</td>
<td>30</td>
</tr>
<tr>
<td>[Li(THF)]₂[UO₂[N(SiMe₃)₂]₂(tmtaa)] (5)</td>
<td>1.80(2), 1.77(2)</td>
<td>1.95(5)</td>
<td>175.9(9)</td>
<td>132(2)</td>
<td>Unassigned</td>
<td>31</td>
</tr>
<tr>
<td>[Li(THF)][Li(THF)₂][UO₂Cl₂(tmtaa)] (6)</td>
<td>1.764(6), 1.792(6), 1.776(5), 1.786(6)</td>
<td>1.88(2), 1.93(2)</td>
<td>176.8(3), 178.0(3), 168.9(6), 171.8(6)</td>
<td>Unassigned</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>[Li(THF)][TMEDA][UO₂(N=C²Bu₂)₃] (7)</td>
<td>1.804(5), 1.830(5)</td>
<td>1.85(1)</td>
<td>179.4(2)</td>
<td>172.2(5)</td>
<td>Unassigned</td>
<td>33</td>
</tr>
<tr>
<td>[Li(THF)(OEt)]₂[UO₂(N=C²BuPh)₂] (8)</td>
<td>1.834(5), 1.822(4)</td>
<td>1.97(1), 1.94(1)</td>
<td>180.0</td>
<td>106.2(4), 107.7(4)</td>
<td>Unassigned</td>
<td>33</td>
</tr>
<tr>
<td>[Li(THF)₂][UO₂[N(HSiMe₃)²(Bu)]₂] (9)</td>
<td>1.785(4), 1.853(5)</td>
<td>1.88(1)</td>
<td>179.7(2)</td>
<td>174.2(6)</td>
<td>Unassigned</td>
<td>34</td>
</tr>
<tr>
<td>[UO₂(THF)][(THF)LiHL] (10-THF)</td>
<td>1.794(3), 1.767(3)</td>
<td>2.06(1)</td>
<td>176.1(2)</td>
<td>120.7(3)</td>
<td>899 (asym.)</td>
<td>35</td>
</tr>
<tr>
<td>[Li(Melm)][UO₂(Ar₂nacnaac)²(C₆-C₆)(C₆H₅N₂)] (12)</td>
<td>1.778(4), 1.788(4)</td>
<td>2.19(1)</td>
<td>176.1(2)</td>
<td>108.2(4)</td>
<td>886 (asym.), 806 (sym.)</td>
<td>36</td>
</tr>
<tr>
<td>[(K[THF])₂][UO₂(NPh₂py)]₁₋ (16)</td>
<td>1.769(7), 1.775(7), 1.779(7), 1.783(7), 2.707(7), 2.716(7), 2.738(7), 2.693(8)</td>
<td>178.0(4), 178.4(4)</td>
<td>157.1(4), 176.1(4)</td>
<td>Unassigned</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>[K(n⁵-C₄H₄CH₃)][UO₂(NAr²Ph)₂] (17)</td>
<td>1.802(2), 1.806(2)</td>
<td>2.589(2), 2.615(3)</td>
<td>177.8(1)</td>
<td>139.3(1), 149.5(1)</td>
<td>Unassigned</td>
<td>37</td>
</tr>
<tr>
<td>[K(py)₂][K(py)][UO₂(μ-O)(L²Me)] (18)</td>
<td>1.786(6), 1.781(6), 1.787(6), 1.784(5)</td>
<td>2.884(7), 2.642(6), 2.722(6), 3.325(6)</td>
<td>176.0(3), 176.1(3)</td>
<td>107.8(3), 174.0(3), 122.7(3), 165.3(3)</td>
<td>924 (asym.)</td>
<td>38</td>
</tr>
<tr>
<td>[K(py)₂][K(py)][UO₂(μ-O)(L²Me)] (20)</td>
<td>1.817(6), 1.803(6), 1.786(6), 1.798(7)</td>
<td>3.079(8), 3.283(8), 2.951(7), 2.699(6), 2.583(6)</td>
<td>177.5(3), 176.5(3)</td>
<td>101.5(3), 99.1(3), 176.1(3), 124.3(3), 162.7(3)</td>
<td>Unassigned</td>
<td>41</td>
</tr>
<tr>
<td>[{UO₂(OH)K(C₆H₆)(H₂L²Me)]₂} (21)</td>
<td>1.796(2), 1.803(2)</td>
<td>2.813(2), 2.838(2)</td>
<td>179.16(7)</td>
<td>108.19(7), 123.01(8)</td>
<td>894 (asym.)</td>
<td>39</td>
</tr>
<tr>
<td>[UO₂(OH)K(THF)₃(H₂L²Me)] (23)</td>
<td>1.788(6), 1.821(6)</td>
<td>3.194(7)</td>
<td>178.5(3)</td>
<td>100.9(2)</td>
<td>895 (asym.)</td>
<td>39</td>
</tr>
<tr>
<td>K₂K(OEt)₂][UO₄(µ₉-APO₃)] (24)</td>
<td>1.824(3), 1.834(3)</td>
<td>2.701(3), 2.741(3), 2.688(3)</td>
<td>172.2(1)</td>
<td>139.3(1), 111.4(1), 129.1(1)</td>
<td>Unassigned</td>
<td>41</td>
</tr>
<tr>
<td>[K(THF)]₂[UO₂[N(SiMe₃)₂]₂] (29)</td>
<td>1.776(3), 1.804(3)</td>
<td>2.669(3)</td>
<td>179.4(2)</td>
<td>174.0(2)</td>
<td>940 (asym.), 799 (sym.), 973 (soln.)</td>
<td>42</td>
</tr>
<tr>
<td>[Rb][UO₂[N(SiMe₃)₂]₂] (30)</td>
<td>1.80(3)</td>
<td>2.74(3)</td>
<td>180.0</td>
<td>159.6(3)</td>
<td>940 (asym.), 804 (sym.), 973 (soln.)</td>
<td>42</td>
</tr>
<tr>
<td>[Cs][UO₂[N(SiMe₃)₂]₂] (31)</td>
<td>1.79(1)</td>
<td>2.93(1)</td>
<td>180.0</td>
<td>155.0(2)</td>
<td>941 (asym.), 804 (sym.), 971 (soln.)</td>
<td>42</td>
</tr>
<tr>
<td>[Li(THF)]₂[UO₂[N(SiMe₃)₂]₂] (32)</td>
<td>1.786(4), 1.841(4)³</td>
<td>1.89(1)³</td>
<td>179.2(1)³</td>
<td>166.5(4)³</td>
<td>943 (asym.), 798 (sym.), 969 (soln.)³</td>
<td>38,42</td>
</tr>
<tr>
<td>[Na(THF)]₂[UO₂[N(SiMe₃)₂]₂] (34)</td>
<td>1.781(5), 1.810(5)⁴</td>
<td>2.201(6)⁴</td>
<td>179.3(2)⁴</td>
<td>161.7(2)⁴</td>
<td>938 (asym.), 928 (asym.), 973 (soln.), 795 (sym.), 805 (sym.)³</td>
<td>42,43</td>
</tr>
<tr>
<td>[{UO(OPb)(THF)}(L²Me)] (47-THF)</td>
<td>1.78(1), 1.817(9)</td>
<td>2.5</td>
<td>176.5(4)</td>
<td>137.8(4)</td>
<td>896 (asym.), 898 (soln.)</td>
<td>44</td>
</tr>
<tr>
<td>{UO(OPb)(py)}(py) (47-py)</td>
<td>1.77(1)</td>
<td>2.91(1)</td>
<td>175.3(6)</td>
<td>149.5(6)</td>
<td>908 (asym.), 895 (soln)</td>
<td>44</td>
</tr>
</tbody>
</table>
The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for unfunctionalized and functionalized uranyl(VI) complexes reported since 2010 are provided in Tables 1 and 2, respectively, and their trends are discussed in more detail in Section 7 (vide infra). Elongated U–O bond lengths in uranyl(VI) complexes (i.e. greater than 1.83 Å) may be accessible when employing strong equatorial σ-donors (i.e. silylamides, alkyl, ketimides, amides and other O-donor ligands), providing a “push” by way of the equatorial ligands, and a “pull” of U\(^{VI}\)–O\(_2\) through Lewis adduct formation, and appears primarily to be an electronic effect.\(^{63,64}\) While deviations from linearity of the OUO unit are scarce across many of these compounds, bond lengths vary considerably and are dependent on equatorial ligand coordination, with steric forces and crystal packing effects appearing to have little structural influence.

3. U\(^{VI}\)→U\(^V\) REDUCTIVE FUNCTIONALIZATION

The combination of the strongly electron donating β-ketoiminate ligand, \(^{\text{Ar}}\text{acnac}\) (\(^{\text{Ar}}\text{acnac} = \text{ArNC(Ph)CHC(Ph)}\text{O}; \text{Ar} = 3,5'-\text{Bu}_2\text{C}_6\text{H}_3\)), and single oxo-group coordination by the Lewis acidic borane B(C\(_6\text{F}_5\)\(_3\)) resulted in the activation of the uranyl(VI) ion towards reductive silylation, providing both uranyl(V) and uranium(IV) dioxo products (see Section 6, vide infra). To expand the scope of this borane-mediated silylation, dibenzoylmethanate (dbm; \(\text{OC(Ph)CHC(Ph)}\text{O}\)) was used as an equatorially coordinating ligand; [U\(^{VI}\)O\(_2\)(dbm)\(_2\)(THF)] (49) was prepared by treating [U\(^{VI}\)O\(_2\)Cl\(_2\)(THF)\(_2\)] (4-THF) with 2 equiv. of Na[dbm]. When 49 was treated with 1 equiv. of R\(_3\)SiH (R = Et, Ph) and 1 equiv. of B(C\(_6\text{F}_5\)\(_3\)), the complexes [U\(^V\){OB(C\(_6\text{F}_5\)\(_3\)}(OSiR\(_3\))(dbm)\(_2\)(THF)] were obtained (R = Et (50), Ph (51); Scheme 6). Complexes 50 and 51 are products of U\(^{VI}\)→U\(^V\) reductive silylation, in which one

<table>
<thead>
<tr>
<th>([\text{UO}{\text{OPb(py)}}{\text{Opy}}{(L}^{\text{Me}})] (48)</th>
<th>1.759(7), 1.853(8)</th>
<th>2.612(8)</th>
<th>177.5(3)</th>
<th>121.3(3)</th>
<th>893 (asym.)</th>
<th>44</th>
</tr>
</thead>
</table>

oxo ligand has been converted into a siloxy ligand and the other is coordinated to the borane. The U–O bond lengths are significantly elongated compared to those of uranyl(VI) complexes, with U–O_B bond lengths of 1.960(2) and 1.952(2) Å and U–O_Si bond lengths of 2.011(2) and 2.024(2) Å for 50 and 51, respectively; the uranyl(V) units also remain linear with O_B–U–O_Si bond angles of 178.43(8) and 175.06(8)° for 50 and 51, respectively. The yields of 50 and 51 are higher when 0.25 equiv. of THF are added to the crystallization solutions, and THF-free 50 may be isolated in the absence of excess THF, affording [U^{V}\{κ^2-O,F-OB(C_6F_5)_3\} (OSiEt_3)(dbm)_2] (52). Complex 52 possesses a short U⋯F_{ortho} intramolecular contact with one C_6F_5 ring, with considerably elongated U–O_B and U–O_Si bond lengths of 1.915(2) and 1.981(2) Å, respectively, and retains a linear O_B–U–O_Si angle of 169.3(1)°.69

Scheme 6. Borane-assisted U^{VI}→U^{V} reductive silylation of a dibenzoylmethanate-coordinated uranyl(VI) complex, [U^{VI}O_2(dbm)_2(THF)] (49).69

![Scheme 6](image)

Alternatively, 49 reacts with 2 equiv. of Ph_3SiOTf in the absence of a borane activator, forming [U^{V}(OSiPh_3)_2(dbm)_2(OTf)] (53; Scheme 7), which possesses two siloxy ligands trans-coordinated to the U^{V} center, with an O–U–O bond angle of 178.81(8)° and U–O bond lengths of 2.005(2) and 2.018(2) Å.70

Scheme 7. U^{VI}→U^{V} reductive silylation of [U^{VI}O_2(dbm)_2(THF)] (49) via double silylation of the uranyl oxo ligands, forming [U^{V}(OSiPh_3)_2(dbm)_2(OTf)] (53).70
A similar result is achieved if the uranyl(VI) bis(β-ketoiminate) complex, \([\text{U}^{\text{VI}}\text{O}_2(\text{Aracnac})_2]\) (54), is treated with two equiv. of \(\text{Ph}_3\text{SiOTf}\) in \(\text{CH}_2\text{Cl}_2\), in which \(\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}\) reductive silylation is achieved, yielding \([\text{U}^{\text{V}}(\text{OSiPh}_3)_2(\text{Aracnac})_2][\text{OTf}]\) (55; Scheme 8).\(^7\) Compound 54 also reacts with excess \(\text{Me}_3\text{SiI}\) to afford \([\text{U}^{\text{V}}(\text{OSiMe}_3)_2\text{I}_2(\text{Aracnac})]\) (56) and \(\text{ArNC(Ph)CHC(Ph)OSiMe}_3(\text{AracnacSiMe}_3)\) and 0.5 equiv. of \(\text{I}_2\) as reaction by-products, or with excess \(\text{Me}_3\text{SiX}\) to yield \([\text{U}^{\text{VI}}\text{O}_2\text{X}_2(\text{OEt}_2)_n(\text{AracnacH})_2]\) (\(n = 1\); 57; \(n = 0\); 58; Scheme 8).\(^4\) Both oxo ligands in 55 and 56 have been converted into siloxy ligands, and the \(\text{U}–\text{O}\) bond lengths range from 1.986(5)-2.044(2) Å\(^4\) and 1.746(6) Å in 57 indicated that no reduction of the \(\text{U}^{\text{VI}}\) center had occurred.\(^4\) The identity of the reducing agent in the formation of 53 and 55 is not immediately obvious, since 2 equiv. of \(\text{Ph}_3\text{SiOTf}\) are required but only 1 equiv. of \([\text{OTf}]^-\) is incorporated into the final product, but is thought that 1 equiv. of either the dbm or \(\text{Aracnac}\) ligand undergoes a one-electron oxidation, yielding a ligand-based radical which then reacts to abstract an H-atom from solvent.\(^7\) This hypothesis is based on the observation of unreacted \(\text{Ph}_3\text{SiOTf}\) and \(\text{Hdbm}\) in the \(^1\text{H}\) NMR spectrum recorded during the formation of 53. On the other hand, the reducing agent in the formation of 56 is hypothesized to be \(\Gamma^-\) which forms \(\text{I}_2\) as a reaction by-product. The formation of \(\text{I}_2\) in this reaction has been experimentally verified by adding \(\text{PPh}_3\) into the reaction mixture, forming \(\text{Ph}_3\text{PI}_2\). The \(\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}\) reduction is facilitated by a decrease in the uranyl reduction potential upon \(\text{Me}_3\text{Si}^+\) coordination to the uranyl oxo groups (in a similar fashion to the effects of coordinating the Lewis acid \(\text{B(C}_6\text{F}_5)_3\) to uranyl), as well as the difference in Si–I and Si–O bond dissociation energies.\(^4\)

Scheme 8. \(\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}\) reductive silylation of both uranyl oxo ligands in \([\text{U}^{\text{VI}}\text{O}_2(\text{Aracnac})_2]\) (54) using either 2 equiv. of \(\text{Ph}_3\text{SiOTf}\) or excess \(\text{Me}_3\text{SiI}\), providing \([\text{U}^{\text{V}}(\text{OSiPh}_3)_2(\text{Aracnac})_2][\text{OTf}]\) (55) and
[U^{V}(OSiMe_{3})_{2}I_{2}(^{2}acnac)] (56). Alternatively, 54 reacts with excess Me_{3}SiX (X = OTf, Cl) to yield [U^{VI}O_{2}X_{2}(OEt_{2})_{n}(^{2}acnacH)_{2}] (X = OTf, n = 1 (57); X = Cl, n = 0 (58)).

The exploitation of the Pacman ligand framework in uranyl chemistry has led to a wide variety of new reactions that enable the controlled reductive functionalization of the uranyl dication. While treating the uranyl(VI) Pacman complex, [U^{VI}O_{2}(S)(H_{2}L_{Me})] (S = THF (11-THF), py (11-py)), with 1 equiv. of LiN(SiMe_{3})_{2} results in the formation of [U^{VI}O_{2}(S)(LiHL_{Me})] (S = THF (10-THF), py (10-py); see Figure 1 in Section 2), the reaction of 11-THF or 11-py with 2 equiv. of a LiR base (R = NPr_{2}, C_{5}H_{5}, CPh_{3}, NH_{2}, H) results in U^{VI} \rightarrow U^{V} reduction and formation of [U^{V}O(OLi)(S)(LiHL_{Me})] (S = THF (59-THF), py (59-py); Scheme 9), in which one of the pyrrole groups in the bottom N_{4}-donor pocket and the exo-oxo ligand have been metallated. Furthermore, treating 11-THF or 11-py with 3 equiv. of LiN(SiMe_{3})_{2} in pyridine yields [U^{V}O(OLi)(py)(Li_{2}L_{Me})] (60), which is the product of U^{VI} \rightarrow U^{V} reduction and metallation of both pyrrole groups and the exo-oxo ligand; further treating 11-THF or 11-py with 4 equiv. of LiN(SiMe_{3})_{2} in THF provides Li[U^{V}O{OLiN(SiMe_{3})_{2}}(THF)(Li_{2}L_{Me})] (61; Scheme 9), in which U^{VI} \rightarrow U^{V} reduction has been achieved, both pyrrole groups in the bottom N_{4}-donor pocket have been metallated and the exo-oxo ligand has been functionalized with LiN(SiMe_{3})_{2}. In this structure a Li^{+} cation is present to balance the charge (Scheme 9). Performing the 3 equiv. reaction in THF results in the formation of a mixture of paramagnetic species. Complexes 59-py, 60 and 61 crystallize as
When 11-THF or 11-py are reacted with 2 equiv. of the weakly reducing silylamide LiN(SiMe₃)₂, both diamagnetic and paramagnetic products are observed by ¹H NMR spectroscopy, with complex 60 as the paramagnetic component. However, the addition of dihydroanthracene (DHA)
to the reaction mixture results in the sole formation of 59. This divergent reactivity relative to the other LiR bases stems from the presence of two different operative mechanisms during \(\text{U}^{VI} \rightarrow \text{U}^V \) reduction and metallation. The LiR bases (\(R = \text{N}^\text{iPr}_2, \text{CPh}_3, \text{C}_5\text{H}_5, \text{NH}_2, \text{H} \)) act as simple reductants with release of a radical (\(R^\bullet \)), which is quenched by the Pacman ligand through H-atom abstraction (as determined by \(^2\text{H} \) NMR spectroscopy and incorporation of deuterium into the Pacman ligand). Alternatively, in the case of \(\text{LiN(SiMe}_3)_2 \), an H-atom abstraction mechanism by the uranyl complex is invoked, requiring the presence of the H-atom donor DHA for clean reactivity. However, it is unknown whether a U=O group or a pyrrolyl radical is responsible for C–H bond cleavage (Scheme 10); DFT calculations were unable to distinguish between the two mechanisms. Treatment of 11-THF or 11-py with 2 equiv. of either \(\text{LiNH}_2 \) or \(\text{LiH} \) also forms a mixture of 60, 10 and unreacted 11; heating this mixture drives the reaction towards 59. Overall, this reactivity suggests that endogenous bonding of a lithium cation to the uranyl oxo group facilitates reduction chemistry.\(^{35}\)

Scheme 10. Two different mechanisms are operative for the synthesis of 60. The LiR reactant in Path A acts as a reductant, whereas the LiR reactant in Path B initially acts as a base, deprotonating the second pyrrole group in the bottom \(N_4 \)-donor pocket. At that point, C–H bond cleavage in weak C–H bond substrates occurs either by the U=O group or a pyrrolyl radical, generating 60.\(^{35}\)
Treating 59-py with 2 equiv. of HCl provides the uranyl(V) hydroxide \([\text{U}^{\text{V}}\text{O(OH)}\text{(py)}(\text{H}_2\text{L}^{\text{Me}})]\) (65); 59-py can be regenerated by treating 65 with 2 equiv. of LiN(SiMe)_3 (Scheme 11). While 65 was not crystallographically characterized, its identity was verified by NMR and IR spectroscopy; an asymmetric OUO stretch located at 765 cm\(^{-1}\) in the corresponding IR spectrum confirms the presence of a U\(^{\text{V}}\) center. Complex 11-py may be regenerated from 65 by treatment with either Ph_3CCl, forming 0.5 equiv. of Gomberg’s dimer, 11-py and HCl, or by treatment with TEMPO, forming 11-py by H-atom abstraction (Scheme 11).\(^{71}\)

Scheme 11. \([\text{U}^{\text{VI}}\text{O}_2\text{(py)}(\text{H}_2\text{L}^{\text{Me}})]\) (11-py) reacts with 2 equiv. of LiN’Pr_2 to provide \([\text{U}^{\text{VI}}\text{O}\{\text{OLi}(\text{py})_2\}\text{(py)}(\text{HLiL}^{\text{Me}})]\) (59-py). 59-py reacts with 2 equiv. of HCl to yield \([\text{U}^{\text{V}}\text{O(OH)}\text{(py)}(\text{H}_2\text{L}^{\text{Me}})]\) (65), which reacts with 2 equiv. of LiN(SiMe)_3, 1 equiv. of Ph_3CCl/TEMPO or 1 equiv. of Cl-SiR_3 to regenerate 59-py, regenerate 11-py or form \([\text{U}^{\text{V}}\text{O(OSiR}_3\text{(py)}(\text{H}_2\text{L}^{\text{Me}})]\) (SiR_3 = SiMe_3 (66), SiMe_2Bu (67), SiPh_2H (68)), respectively.\(^{71}\)
Complex 65 also reacts with chorosilanes, ClSiR₃ (SiR₃ = SiMe₃, SiMe₂Bu, SiPh₂H), to provide the uranyl(V) mono oxo-silylated products, [U⁵⁺O(OSiR₃)(py)(H₂L⁴⁺)] (SiR₃ = SiMe₃ (66), SiMe₂Bu (67), SiPh₂H (68); Scheme 11). While NMR and IR spectra were sufficient to determine the identity of complexes 66-68, the solid-state structures of 66 and 67 were also obtained to verify their assignments, although due to issues with multiple twinning the structure of 67 only supports connectivity. The U–Oexo and U–Oendo bond lengths in 66 are 2.034(4) and 1.854(4) Å, respectively, and lie in the expected range for uranyl(V) complexes (see Tables 3, 4 and 6 and Section 7).⁷¹

[U⁶⁺O₂(py)(H₂L⁴⁺)] (11-py) also reacts with an additional 1.5 equiv. of [U⁶⁺O₂{N(SiR₃)₂}(py)₂] (SiR₃ = SiMe₃ (2-py), SiMe₂Ph (69)) to provide the butterfly-shaped complexes [{U⁶⁺O(OSiR₃)₂}(L⁴⁺)] (SiR₃ = SiMe₃ (70), SiMe₂Ph (71); Scheme 12a). Alternatively, H₄L⁴⁺ reacts with 2.5 equiv. of 2-py to generate 70, although in only 37 % yield. Complexes 70 and 71 are the products of U⁶⁺→U⁵⁺ reduction of both U centers that have been installed into the [L⁴⁺]⁺ Pacman ligand and silylation of both exo-oxo ligands. Compounds 70 and 71 are butterfly-shaped bis(uranyl(V)) dimers and display an unusual oxo motif for high-valent uranium in which one of the four uranyl(V) oxo ligands has migrated from a trans-coordination position to a cis-coordination position, giving rise to a U⁵⁺₂O₂ core. The U–O bond lengths range from 2.034(4)-2.099(4) Å and 2.030(5)-2.087(5) Å in 70 and 71, respectively, and the asymmetric OUO stretching frequency is found at 862 and 802 cm⁻¹ for 70 and between 890-850 cm⁻¹ for 71, which are indicative
of uranyl(V). Furthermore, the U···U distance is very short in complexes 70 and 71, which is 3.3557(5) and 3.3562(4) Å, respectively.45

Scheme 12. (a) Synthesis of [{UVO(OSiR\textsubscript{3})\textsubscript{2}(L\textsubscript{Me})} (SiR\textsubscript{3} = SiMe\textsubscript{3} (70), SiMe\textsubscript{2}Ph (71)) by heating [UVIO\textsubscript{2}(py)(H\textsubscript{2}L\textsubscript{Me})] (11-py) with 1.5 equiv. of [UVIO\textsubscript{2}{N(SiR\textsubscript{3})\textsubscript{2}}\textsubscript{2}(py)\textsubscript{2}] in pyridine, alongside 30% of an aggregate mixture with empirical formula [(UO\textsubscript{2})\textsubscript{2.5}(L\textsubscript{Me})\{HN(SiR\textsubscript{3})\}]. (b) When heated between 20 and 70 °C, H\textsubscript{4}L\textsubscript{Me} reacts with 2.5 equiv. of [UVIO\textsubscript{2}{N(SiR\textsubscript{3})\textsubscript{2}}\textsubscript{2}(py)\textsubscript{2}] to afford only the aggregate mixture, with further heating to 120 °C providing trace amounts of 70 and 71. Alternatively, adding Cl-SiR\textsubscript{3} to the aggregate mixture provides 70 and 71 in high yields. (c) Treating the aggregate mixture with empirical formula [(UO\textsubscript{2})\textsubscript{2.5}(L\textsubscript{Me})\{NH(SiMe\textsubscript{2}Ph)\}(py)] with Cl-SiMe\textsubscript{3} results in the formation of 70 (75%) and [{UVO(OSiMe\textsubscript{3})} {UVO(OSiMe\textsubscript{2}Ph)}\{L\textsubscript{Me}\}] (75; 25%), and (d) exposure of the aggregate mixture with empirical formula [(UO\textsubscript{2})\textsubscript{2.5}(L\textsubscript{Me})\{NH(SiMe\textsubscript{3})\}(py)] to air results in the formation of [{UVO(OSiMe\textsubscript{3})} (UVO\textsubscript{2}(L\textsubscript{Me})) UVIO\textsubscript{2}(µ-OH)\textsubscript{2}(THF)\textsubscript{2}]\textsubscript{2} (76).45
During the formation of 70 and 71, an insoluble aggregate mixture of uranyl-LMe species was obtained in an approximate 30% yield, and was identified as [UVIO\textsubscript{2}(py)\textsubscript{2}]\{UVO\{(UVO\textsubscript{2})\{UVO(OH)\}(LMe)\}\textsubscript{2} (72), [[UVO(OSiR\textsubscript{3})]\{UVO(OH)\}(LMe)] (73-Me/73-Ph) and [[UVO\{OUVIO\textsubscript{2}(NHSiR\textsubscript{3})\}(py)}\{UVO(OH)\}(LMe)] (74-Me/74-Ph; Scheme 12a; 73-Me and 74-Me are derived from [UVIO\{N(SiMe\textsubscript{2}R\textsubscript{2})\}\textsubscript{2}(py)\textsubscript{2}] and 73-Ph and 74-Ph are derived from [UVIO\{N(SiMe\textsubscript{2}Ph)\}\textsubscript{2}(py)\textsubscript{2}]). If H\textsubscript{4}LMe reacts with 2.5 equiv. of [UVIO\{N(SiR\textsubscript{3})\}\textsubscript{2}(py)\textsubscript{2}] below 70 °C, only the paramagnetic aggregate mixture and 4 equiv. of HN(SiR\textsubscript{3})\textsubscript{2} are observed by NMR spectroscopy. If this mixture is then heated to 120 °C, only trace amounts of 70 and 71 are produced. However, if the aggregate mixture is treated with Cl-SiR\textsubscript{3}, complexes 70 and 71 are obtained in good yields (Scheme 12b). The aggregate mixture was identified as 72, 73-Me/73-Ph, and 74-Me/74-Ph based on the following observations: (i) 4 equiv. of HN(SiR\textsubscript{3})\textsubscript{2} are produced as a by-product when treating H\textsubscript{4}LMe with 2.5 equiv. of [UVIO\{N(SiR\textsubscript{3})\}\textsubscript{2}(py)\textsubscript{2}], 2.5 equiv. of [UVIO\textsubscript{2}2+ are consumed per
equivalent of $[\text{LMe}]^4$ and an additional equivalent of HN(SiR$_3$)$_2$ is produced upon treating the mixture of species 72, 73-Me/73-Ph, and 74-Me/74-Ph with Cl-SiR$_3$, giving rise to an empirical formula of $[(\text{UO}_2)_{2.5}(\text{LMe})\{\text{NH(SiR}_3\}_2}\{\text{py}\}]$ (which is supported by elemental analysis; Scheme 12b), (ii) treating the mixture of species 72, 73-Ph and 74-Ph with Cl-SiMe$_3$ produced 70 (75%) and the mixed silylated $[\{\text{U}^\text{V}\text{O(OSiMe}_3\}_2\}\{\text{U}^\text{VI}(\text{OSiMe}_2\text{Ph})\}\{\text{LMe}\}]$ (75, 25%), indicating that not all of the oxo groups in the mixture are silylated given that the silyl groups in complexes 70 and 71 are known to not rearrange (Scheme 12c), (iii) laser desorption ionization (LDI) mass spectrometry supported this assignment, and (iv) an X-ray crystal structure of the mixed-valence complex, $[\{\{\text{U}^\text{V}\text{O(OSiMe}_3\}_2\}\{\text{U}^\text{VI}(\text{OSiMe}_2\text{Ph})\}\{\text{LMe}\}]U^\text{VI}O_2$(µ-OH)$_2(THF)_2$]$_2$ (76) was obtained following adventitious oxidation of the mixture of 72, 73-Me and 74-Me (Scheme 12d); mixed-valence 76 contains the U$^\text{V}_2$O$_2$ butterfly core with one exo-oxo ligand silylated and the other dimerized through the oxo groups as a uranyl(VI) hydroxide. The source of the silyl group in 70 and 71 can be traced back to the uranyl(VI) silylamide starting material and not the HN(SiMe$_3$)$_2$ by-product, as there is no evidence for the formation of 70 or the mixed-silyl complex 75 upon treating 11-py with 1.5 equiv. of [U$^\text{VI}$O$_2\{\text{N(SiMe}_2\text{Ph})_2\}_2\{\text{py}\}_2\}_2$ in the presence of N(SiMe$_3$)$_3$. It is envisioned that initial one-electron $\text{U}^\text{VI}$$\rightarrow$$\text{U}^\text{V}$ reduction in 11-py occurs via U–N bond homolysis upon the addition of 1.5 equiv. of the uranyl silylamide starting material to 11-py, and that additional uranyl silylamide is required for reduction of the second U center and silylation by N–Si bond homolysis. Remarkably, complexes 70 and 71 neither decompose upon exposure as solids to air for 48 hours nor in wet benzene solutions, which contrasts greatly to the known instability of uranyl(V) species towards disproportionation to uranyl(VI) and uranium(IV) dioxo species. Furthermore, the solution cyclic voltammogram (CV) of 70 and 71 did not show any electrochemical oxidation processes, which was further supported by a lack of reactivity between 70 and 71 with I$_2$ or [Ce(OTf)$_4$]. The electronic structure and magnetic behavior of 70 and 71 have also been investigated but these results are beyond the scope of this review.}^{45}
The first example of covalent bond formation to a uranyl oxo group in the form of reductive silylation was reported in 2008 with the synthesis of \([U^{V}O(OSiMe_2R)(THF)(M_2X_2L^{Me})]\) \((M = Fe, X = I, R = Me (77); M = Fe, X = I, R = Ph (78); M = Zn, X = I, R = Me (79); M = Zn, X = Cl, R = Me (80)) formed by reacting 11-THF with the silylamido base, K(N(SiMe_3)_2), in the presence of a transition metal dihalide.\(^{40}\) Since the synthesis of complexes 77-80, the mechanism of this reaction has been probed and compared to alternative reactions that lead to oxo-group metalation.\(^{72}\) It was originally postulated that the Group 1 base was essential to this reaction, and that the oxo-group reactivity was enhanced by coordination to a Lewis acidic metal in the bottom \(N_4\)-pocket of the Pacman ligand. When 11-THF is treated with 2 equiv. of K(N(SiMe_3)_2) followed by 2 equiv. of ZnCl_2, reductive silylation of the uranyl ion is observed, forming \([(Me_3SiOU^{V}O)(py)(ZnCl)_2(L^{Me})]\) (81; Scheme 13a). In contrast, treating 11-THF with 2 equiv. of the Group 1 metal bases LiN\(^{i}\)Pr\(^2\) or KH followed by the addition of 2 equiv. of ZnX\(_2\) \((X = Cl, I)\) results in reductive zincation of the uranyl ion, forming \([(py)X_2ZnOU^{V}O(py)\{Zn(py)\}(HL^{Me})]\) \((X = Cl (82), I (83); Scheme 13b).\(^{40}\) These different reaction pathways were explored by deploying various zinc(II) and magnesium(II) reagents. Complex 11-py reacts with 2 equiv. of Mg(N\(^{n}\)_2 \((N^{n} = N(SiMe_3)_2))\) to afford \([(py)_2(N^{n})MgOU^{V}O\{py\}\{Mg(py)\}(HL^{Me})]\) (84), the product of U\(^{VI} \rightarrow U^{V}\) reductive oxo-metalation of the uranyl and metalation of one of the two pyrroles in the bottom donor pocket of the ligand (Scheme 14a). One-electron reduction of the uranyl ion occurs through Mg–N bond homolysis.\(^{72}\)

Scheme 13. Treatment of \([U^{VI}O_2(py)(H_2L^{Me})]\) (11-py) first with a Group 1 metal base followed by a zinc dihalide leads to: (a) \(U^{VI} \rightarrow U^{V}\) reductive silylation, yielding \([(Me_3SiOU^{V}O)(py)(ZnCl)_2(L^{Me})]\) (81), or (b) \(U^{VI} \rightarrow U^{V}\) reductive metalation, providing \([(X_2(py)ZnOU^{V}O)(py)\{Zn(py)\}(HL^{Me})]\) \((X = Cl (82), I (83)).\(^{72}\)
In contrast, 11-py reacts with only one of 2 equivs. of Zn(N"')(2) to afford [UVIO\textsubscript{2}(py){Zn(py)}{(HLMe)}] (85), in which reduction of the uranyl ion is not observed, and both pyrrole NH groups have been metallated (Scheme 14b). Furthermore, 85 does not react with MgN"'. These results indicate that coordination of the zinc cation to the endo-oxo group of uranyl is insufficiently activating to enable uranyl(VI) reduction by M–N bond homolysis, and it is likely that coordination of a more Lewis acidic metal dication (i.e. Mg2+) to the endo-oxo group results in enhanced activation of the uranyl ion, thus enabling UVI\rightarrow UV reduction by M–N bond homolysis. Importantly, it was found that the reaction between the mixed-ligand reagent ZnCl(N") and 11-py formed 81 in 62% yield; the remaining 38% was composed of 11-py, 82, and [UVIO\textsubscript{2}(py)(ZnCl)(HLMe)] (86; Scheme 15a). Complex 86 was also prepared from 11-py and 1 equiv. of ZnCl(N") and was characterized by NMR spectroscopy (Scheme 15b).72

Scheme 14. Treatment of [UVIO\textsubscript{2}(py)(H\textsubscript{2}LMe)] (11-py) with: (a) 2 equiv. of MgN"' or (b) ZnN"' to provide [{(py)\textsubscript{2}N"'MgOUVO}(py){Mg(py)}{(HLMe)}] (84) and [UVIO\textsubscript{2}(py){Zn(py)}{(HLMe)}] (85), respectively.72

Scheme 15. Treatment of [UVIO\textsubscript{2}(py)(H\textsubscript{2}L)] (11-py) with: (a) 2 equiv. of ZnCl(N") provides a mixture of 11-py, [UVIO\textsubscript{2}(py)(ZnCl)(HLMe)] (86), [[(Me\textsubscript{3}SiOUVO)(py)(ZnCl)\textsubscript{2}(LMe)] (81) and [{Cl\textsubscript{2}(py)ZnOUVO}(py){Zn(py)}{(HLMe)}] (82), and with (b) 1 equiv. of ZnCl(N") provides only 86.72
In order for oxo-silylation to be favored over oxo-metalation, N–Si bond homolysis must be preferred over M–N bond homolysis (M = Zn, Mg) within an oxo-coordinated M–N–SiR₃ group. Furthermore, the silylation pathway is driven by the formation of a strong Si–O bond and is enhanced when the alternative O–M bond is weaker. The zinc compound ZnCl(N'') is well suited to both oxo group activation and silyl group delivery, as is highlighted by the formation of both 81, 82 and 86 when reacted with complex 11-py. However, its reduced Lewis acidity relative to Mg(N'')₂ dictates that oxo-silylation is preferred over oxo-metalation.⁷²

The uranyl(VI) Pacman complex 11-py reacts with either [Cp₂TiCl(CH₂)(AlMe₂)] at room temperature or HAl′Bu₂ at 70 °C to afford [U⁴⁺O{OAlR₂(py)}(H₂L₉Me)] (R = Me (87), ′Bu (88); Scheme 16), the product of U⁶⁺→U⁴⁺ reductive alumination of the uranyl ion. The U–O_exo and U–O_endo bond lengths in complexes 87 and 88 are 1.962(3)/1.962(2) and 1.856(3)/1.855(3) Å, respectively, which are elongated relative to those expected for uranyl(VI) complexes, and the O–U–O bond angles are 174.3(1) and 175.1(1)° for 87 and 88, respectively. It is likely that the reducing electron required in the formation of 87 and 88 is derived from either Al–C or Al–H bond homolysis. Subsequent reactions of complexes 87 and 88 with alkyllithium reagents and metal hydrides are discussed in Section 4.⁷³

Scheme 16. Reductive alumination of [U⁶⁺O₂(py)(H₂L₉Me)] (11-py) using either [Cp₂TiCl(CH₂)(AlMe₂)] or HAl′Bu₂, yielding [U⁴⁺O{OAlR₂(py)}(H₂L₉Me)] (R = Me (87), ′Bu (88)).⁷³
The reductive functionalization chemistry of **11-THF** and \([\text{U}^{VI}O_2(S)(H_2L^{et})]\) (\(S = \text{THF}\) **89-THF**); \(H_2L^{et}\) = macrocyclic Pacman-shaped Schiff-base ligand with ethyl substituents on the meso-carbon atoms) with common actinide precursors has also been explored, resulting in the first complex formed from reduction of the uranyl ion by a transuranic species (Scheme 17).

Scheme 17. Reductive functionalization of uranyl in \([\text{U}^{VI}O_2(\text{THF})(H_2L^{Me})]\) (11-THF) and \([\text{U}^{VI}O_2(\text{THF})(H_2L^{Et})]\) (89-THF) by \([\text{U}^{III}\text{Cp}_3]\) or \([\text{Np}^{III}\text{Cp}_3]\), providing \([\text{U}^{V}O(\text{OU}^{IV}\text{Cp}_3)(\text{THF})(H_2L^{Me})]\) (90), \([\text{U}^{V}O(\text{OU}^{IV}\text{Cp}_3)(\text{THF})(H_2L^{Et})]\) (91), \([\text{U}^{VI}O(\text{ONp}^{III}\text{Cp}_3)(\text{THF})(H_2L^{Me})]\) (92) and \([\text{U}^{VI}O(\text{ONp}^{III}\text{Cp}_3)(\text{THF})(H_2L^{Et})]\) (89).

Complexes **11-THF** and **89-THF** react with \([\text{U}^{III}\text{Cp}_3]\) to yield oxo-functionalized \([\text{U}^{V}O(\text{OU}^{IV}\text{Cp}_3)(\text{THF})(H_2L^{Me})]\) (90) and \([\text{U}^{V}O(\text{OU}^{IV}\text{Cp}_3)(\text{THF})(H_2L^{Et})]\) (91; Scheme 17). Based on X-ray diffraction data (\(U–O_{exo} = 1.976(3)/1.986(3)\) Å, \(U–O_{endo} = 1.840(3)/1.844(3)\) Å, \(O–U–O = 178.1(1)/176.9(1)^{\circ}\) for 90/91, respectively), paramagnetic shifts in the resulting \(^1\text{H}\) NMR spectra, IR spectra (\(\nu[\text{OUO asym.}] = 897\) and 893 cm\(^{-1}\), respectively) and SQUID magnetometry measurements,
these are best described as UIV/UV complexes formed upon UVI\rightarrowUV reduction of the uranyl ion. 11-THF and 89-THF also react with [NpIIICp$_{3}$], in these cases to form [UVIO(O(NpIIICp$_{3}$))(THF)(H$_{2}$LMe)] (92) and [UVIO(O(NpIIICp$_{3}$))(THF)(H$_{2}$LEt)] (93; Scheme 17) in which the oxidation states are less clear-cut. While certain X-ray diffraction metrics for complexes 92 and 93 (U–Oexo = 1.975(4)/1.975(7) Å, U–Oendo = 1.842(4)/1.826(7) Å, O–U–O = 178.1(2)/176.9(3)0 for 92/93, respectively), paramagnetic shifts in the ^{1}H NMR spectra, and IR spectra (ν[OUO asym.] = 891 and 892 cm$^{-1}$, respectively) suggest UVI\rightarrowUV reduction of the uranyl ion has occurred, the Np–Oexo bond lengths and SQUID magnetometry measurements suggest that complexes 92 and 93 are best described as donor-acceptor oxo-bridged NpIII/UVI compounds with only partial electron transfer occurring; this assignment is further corroborated by DFT calculations which also suggest an explanation for the unexpectedly strong paramagnetically shifted resonances in the solution NMR spectra of 93, as they find a anomalously high s-orbital contribution to key Np orbitals. The reactions of 11-THF and 89-THF with [PuIIICp$_{3}$] were also investigated and, in agreement with the expected reducing capability of PuIII, no oxo-coordination was observed; the reactions were carried out in THF, so there may have been an additional competition for the Pu center by the donor solvent.47

Uranyl(V) complexes are directly accessible from uranyl(VI) precursors. The Pacman ligand H$_{4}$LMe reacts with 2.5 equiv. of [Li(py)$_{2}$][UVIO$_{2}$\{N(SiMe$_{3}$)$_{2}$\}$_{3}$] (94) in boiling pyridine over 12 hours to afford the doubly lithiated UV/UV complex, [{(py)$_{3}$LiOUVO}$_{2}$LMe] (95; Scheme 18a). Complex 95 possesses Li-coordinated exo-oxo groups and a central diamond-shaped [U$^{V}_{2}$O$_{2}$] core in which the two endo-oxo atoms bridge the uranium centers in axial and equatorial positions, similarly to the doubly silylated bis(uranyl(V)) complexes 70 and 71 (vide supra). 95 reacts with two equivalents of a chlorostannane, R$_{3}$SnCl, to afford doubly stannylated [{R$_{3}$SnOUVO}$_{2}$LMe] complexes (R = nBu (96), Ph (97); Scheme 18b). Complexes 96 and 97 could also be prepared from the dipotassium analogue of 95, [{(py)$_{2}$KOUVO}$_{2}$LMe] (98), and the respective chlorostannane. Unexpectedly, reactions between 95 and [TiIVCl(OiPr)$_{3}$] did not afford [{(OiPr)$_{3}$TiOUVO}LMe] but instead provided [{(py)$_{3}$LiOUVO}O{OUVO}Pr)LMe] (99), in which one of the Li cations has been replaced by
an iso-propyl group (Scheme 18c). While 99 was stable as a solution in pyridine, attempts to isolate it on a bulk scale were unsuccessful and provided 0.5 equiv. of dilithiated 95 and the doubly alkoxylated complex, [(PrO)2(LMe)] (100). 100 was also obtained by treating either 95 or 99 with excess [TiIVCl(OiPr)3] (Scheme 18d and 18e). Attempts to prepare both 99 and 100 from 95 and iPrCl were unsuccessful, providing intractable mixtures, so it is a realistic possibility that exchange of the lithiated uranyl oxo group by the Ti-derived OiPr group has occurred.29

Complex 11-py reacts with [Li(py)2][UVIIO2{N(SiMe3)2}] (94) to provide the lithiated/silylated UVI/UV complex, [{(py)3LiOUVLO}(Me3SiOUVLO)LMe] (101; Scheme 18f). Similarly to 95, complexes 96-101 possess a diamond-shaped [UV2O2] core.29

Scheme 18. (a) Synthesis of [{(py)3LiOUO}2(LMe)] (95), (b) subsequent reactivity with stannanes to provide [{R3SnOUVLO}2(LMe)] (R = nBu (96), Ph (97)), and (c)/(d)/(e) TiIV reagents to yield [{(py)3LiOUVLO}(OUVOiPr)LMe] (99) and [(OiPrOUO)2(LMe)] (100). (f) Synthesis of a mixed lithiated/silylated UVI/UV bis(uranil) Pacman complex, [{(py)3LiOUVLO}(Me3SiOUVLO)LMe] (101).29
Reduced and oxo-functionalized mixed uranyl(V)/lanthanide(III) Pacman complexes can be accessed for all of the rare earth cations (except Pm) using a Ln–N bond homolysis route (Scheme 19). Treatment of \(11\text{-py}\) with 1 equiv. of the rare-earth silylamide \([\text{Ln}^{III}\{\text{N(SiMe}_3)_2\}]\) yields \([\{\text{U}^{V}\text{O}_2\text{Ln}^{III}\text{py}_2(\text{L}^{Me})\}_2]\) (Ln = Sc (102), Y (103), Ce (104), Sm (105), Eu (106), Gd (107), Dy (108), Er (109), Yb (110) and Lu (111)) in which the pyrrole groups of the bottom \(N_4\)-donor pocket have been deprotonated and coordinated to the Ln\(^{III}\) ion (Scheme 19a). Uranyl U\(^{VI}\)\(\rightarrow\)U\(^{V}\) reduction occurs upon Ln–N bond homolysis of the third silylamido ligand, which then abstracts either a proton or deuterium from a solvent molecule. Complexes 102-111 exist as dimers with bridging \([\text{U}^{V}\text{O}_2\text{]}\) interactions holding the two uranyl units together, and dimerization is thought to occur subsequent to Ln–N bond homolysis and U\(^{VI}\)\(\rightarrow\)U\(^{V}\) reduction, given the greater Lewis basicity of the U\(^{V}\) oxo groups. Even so, this dimer is readily split by alkali metal halides which satisfy both the Lewis acid and base requirements of the uranyl(V) center. The addition of either LiCl or LiI to \([\{\text{U}^{V}\text{O}_2\text{Ln}^{III}\text{py}_2(\text{L}^{Me})\}_2]\) (Ln = Y, La, Sm, Dy) provided the monomeric [(py)_3LiOUO(µ-X)Ln(py)(L^{Me})] complexes (X = Cl, Ln = Y (112), La (113), Sm (114), Dy (115); X = I, Ln = Y (116), La (117), Sm (118), Dy (119)), in
which the \textit{exo}-oxo ligand of the uranyl(V) ion is coordinated to a Li+ cation, and a halide is residing in a bridging position between the UV and LnIII centers (Scheme 19b).74,75 Single-electron reduction of the uranyl(VI) ion should also be possible if a suitable Ln–A (A = co-ligand) bond homolysis route is available, and indeed this has been verified through deployment of LnIII aryloxides, [Ln(OAr)\textsubscript{3}] (Ar = C\textsubscript{6}H\textsubscript{2}-2,6-'Bu\textsubscript{2}-4-Me). While the variable-temperature SQUID magnetometry and IR, NIR and EPR spectroscopies on complexes 102-119 have been studied to obtain a better understanding of the electronic structure of these complexes and their f-electron exchange interactions,74 these observations are beyond the scope of this review and will not be discussed further.

\textbf{Scheme 19.} Synthesis of (a) mixed uranyl(V)/lanthanide(III) Pacman complexes 102-111 by reduction of [UVIO\textsubscript{2}]2+ by Ln–N bond homolysis (Ln = Sc (102),74 Y (103),75 Ce (104),74 Sm (105),75 Eu (106), Gd (107), Dy (108), Er (109), Yb (110), Lu (111)) and (b), cleavage of the subsequently formed dimer with LiCl or LiI, providing complexes 112-119 (X = Cl, Ln = Y (112), Ln = La (113), Sm (114), Dy (115); X = I, Ln = Y (116), La (117), Sm (118), Dy (119)).74

The uranyl(VI) complex, [UVIO\textsubscript{2}(dpaea)] (120), synthesized from [UVIO\textsubscript{2}(NO\textsubscript{3})\textsubscript{2}(OH\textsubscript{2})\textsubscript{6}] (121) and H\textsubscript{2}dpaea, reacts with 1 equiv. of [CoCp*2] to afford the uranyl(V) complex, [Cp*2Co][UVO\textsubscript{2}(dpaea)] (H\textsubscript{2}dpaea = bis(pyridyl-6-methyl-2-carboxylate)-ethylamine, 122; Scheme 20). While this is not an example of reductive functionalization of the uranyl ion, it is a rare example of uranyl reduction with an outer-sphere reductant to afford a thermodynamically stable uranyl(V) product and is therefore noteworthy for inclusion in this review. Complex 122 possesses an O–U–O
bond angle of 177.0(6)° and U–O bond lengths of 1.83(1) and 1.84(1) Å, which are significantly elongated relative to the uranyl(VI) starting complex (1.75(3) Å), although as a separated ion pair, it does not precisely fit the definition of oxo-functionalised. Furthermore, the asymmetric OUO stretching frequency was found at 787 cm⁻¹ in the IR spectrum of 122, which is at significantly lower frequency relative to uranyl(VI) 120 (913 cm⁻¹). Remarkably, once isolated uranyl(V) 122 is stable with respect to ligand dissociation and disproportionation in D₂O. ⁴⁸

Scheme 20. [U⁶⁺O₂(dpaea)] (120) reacts with [CoCp*₂] to yield [Cp*₂Co][U⁵⁺O₂(dpaea)] (122). The H₂dpaea ligand is depicted at the top of the Scheme. ⁴⁸

Lastly, in an attempt to prepare a uranyl(VI) carbene complex by deprotonation of a carbene analogue bound to uranyl(VI), [U⁵⁺O₂Cl(BIPMH)(THF)] (BIPMH = HC(PPh₂NSiMe₃)₂, 123), which was originally reported in 2003, ⁷⁶ was treated with sodium benzyl, NaCH₂C₆H₅. However, this provided the bimetallic uranyl(VI)/uranyl(V) complex, [U⁶⁺O₂(BIPMH)(μ-Cl)U⁵⁺O₂(BIPMH)] (124), along with NaCl and (C₆H₅CH₂)₂ as reaction by-products (Scheme 21). The slow elimination of chloride enables trapping of the uranyl(V) fragment by unreacted uranyl(VI). Complex 124 is formed irrespective of the number of equivalents of NaCH₂C₆H₅ used for the reaction, and attempts to prepare 124 by treating 123 with other alkali metal alkyls, amides and hydrides resulted in the formation of intractable mixtures. The ³¹P{¹H} NMR spectrum of 124 contains one sharp (δ ~5.2) and one broadened resonance (δ ~129), the magnetic moment of 124 measured in benzene at 298 K is 2.59 μ_B, and the IR spectrum contains asymmetric OUO stretching frequencies at 906, 835 and 803
cm\(^{-1}\), all of which are indicative of one diamagnetic uranyl(VI) and one paramagnetic uranyl(V) ion being present in 124.\(^{77}\) This result contrasts to that reported from deployment of the \([\text{C}(\text{PPh}_2\text{S})_2]^{2-}\) dianion, in which deprotonation of \(\text{CH}_2(\text{PPh}_2\text{S})_2\) with excess LiNEt\(_2\) in the presence of \([\text{U}^{\text{VI}}\text{O}_2(\text{OTf})_2]\) (125) was found to be a viable strategy for the synthesis of a uranyl(VI) carbene (ylid) complex, \([\text{U}^{\text{VI}}\text{O}_2(\text{SCS})(\text{py})_2]\) (126; SCS = \([\text{C}(\text{PPh}_2\text{S})_2]^{2-}\)).\(^{49}\)

Also formed in the reaction between 123 and NaCH\(_2\text{C}_6\text{H}_5\), albeit as a minor product (~2% yield), is the uranyl(VI)/uranyl(V)/uranyl(V) trimer, \([\text{U}^{\text{VI}}\text{O}_2(\text{BIPMH})(\mu_3-\text{Cl})\{\text{U}^{\text{V}}\text{O}_2(\text{BIPMH})\}_2]\) (127; Scheme 21), in which oxo-bridging essentially generates the uranyl-functionalized oxo group. The \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum of 127 contains a sharp signal at \(-5.2\) ppm and a broad quartet at \(-149\) ppm. Furthermore, the magnetic moment of 127 in benzene at 298 K is 4.01 \(\mu\text{B}\), which is indicative of one uranyl(VI) and two uranyl(V) ions being present in 127.\(^{77}\)

Scheme 21. Synthesis of the mixed-valence complexes \([\text{U}^{\text{VI}}\text{O}_2(\text{BIPMH})(\mu-\text{Cl})\text{U}^{\text{V}}\text{O}_2(\text{BIPMH})]\) (124) and \([\text{U}^{\text{VI}}\text{O}_2(\text{BIPMH})(\mu_3-\text{Cl})\{\text{U}^{\text{V}}\text{O}_2(\text{BIPMH})\}_2]\) (127) from \([\text{U}^{\text{VI}}\text{O}_2\text{Cl}(\text{BIPMH})(\text{THF})]\) (123) and 0.5 equiv. of sodium benzyl. The [BIPMH]\(^{-}\) ligand is depicted in the bottom left hand corner of the Scheme.\(^{77}\)

Complex 124 bridges the uranyl(V) oxo group and the U\(^{\text{VI}}\) center through both oxo and chlorido ligands while complex 127 is trinuclear, with two bridging uranyl(V) oxo groups and
one bridging UVI oxo group. Furthermore, both 124 and 127 contain a chlorido ligand that is bridging the U cations; the chlorido ligand in 124 is bridging two metal centers whereas that in 127 is bridging three metal centers. The U–O bond lengths in the uranyl(VI) ion in 124 are 1.785(4) and 1.776(4) Å, whereas those in the uranyl(V) ion are 1.932(4) and 1.843(5) Å, in which the longer U–O bond length corresponds to the uranyl(V) oxo that is participating in the CCI. The U–O bond lengths in the uranyl(VI) ion in 127 are 1.776(4) and 1.812(4) Å, whereas those in the uranyl(V) ions range from 1.822(4)-1.966(4) Å. Similarly to 124, the longer U–O bond length corresponds to the uranyl(V) oxo that is participating in the CCI. The O–U–O bond angles remain nearly linear in both compounds, ranging from 171.0(2)-177.9(2)°. The U···O bond length in the uranyl(V)/uranyl(VI) dimer in 124 is 2.316(4) Å whereas those in 127 are 2.544(4), 2.360(4) and 2.239(4) Å, in which the longest U···O distance is derived from the uranyl(VI) oxo group and a UV center. This elongated distance could be a consequence of the decrease in Lewis basicity of the uranyl oxo ligand moving from UV to UVI, as well as a contraction in the U–oxo bond length in the uranyl(VI) ion, which combined with the geometric constraints imparted by the fused cubane core would prohibit close approach to another metal center. Solutions of 124 and 127 decompose upon standing in toluene at room temperature, producing a mixture of unidentified products.77

Table 3. Structural and spectroscopic data for reductively functionalized mixed uranyl(VI)/uranyl(V) and uranyl(V) complexes reported since 2010 and discussed in Section 3. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂[UO₂(µ₂-O)(L₆⁺)]₂</td>
<td>1.867(7), 2.077(5)</td>
<td>2.598(7), 2.753(8)</td>
<td>176.4(3)</td>
<td>143.8(4), 113.1(3)</td>
<td>Unassigned</td>
<td>38</td>
</tr>
<tr>
<td>[K₂[UO₂(µ₂-O)(L₆⁺)]₂(thf)]</td>
<td>1.853(5), 2.090(5), 2.101(5)</td>
<td>2.658(6), 2.748(6), 2.764(6)</td>
<td>172.9(2), 173.7(2)</td>
<td>118.8(3), 114.0(2), 128.5(3)</td>
<td>Unassigned</td>
<td>38</td>
</tr>
<tr>
<td>UO₂[Co₂F₃]₂(OSiEt₃)(dbm)(thf)</td>
<td>2.011(2), 1.960(2)</td>
<td>1.681(2) (X = Si), 1.503(4) (X = B)</td>
<td>178.43(8)</td>
<td>153.5(1) (X = Si), 165.8(2) (X = B)</td>
<td>Unassigned</td>
<td>69</td>
</tr>
<tr>
<td>UO₂[Co₂F₃]₂(OSiPh₃)(dbm)(thf)</td>
<td>2.024(2), 1.952(2)</td>
<td>1.665(2) (X = Si), 1.525(4) (X = B)</td>
<td>175.06(8)</td>
<td>164.0(1) (X = Si), 172.0(2) (X = B)</td>
<td>Unassigned</td>
<td>69</td>
</tr>
<tr>
<td>UO₂[Co₂F₃]₂(OSiEt₃)(dbm)(thf)</td>
<td>1.981(3), 1.915(2)</td>
<td>1.720(3) (X = Si), 1.546(5) (X = B)</td>
<td>169.3(1)</td>
<td>148.7(2) (X = Si), 151.6(2) (X = B)</td>
<td>Unassigned</td>
<td>69</td>
</tr>
<tr>
<td>UO₂[Co₂F₃]₂(OSiPh₃)(dbm)(thf)</td>
<td>2.005(2), 2.018(2)</td>
<td>1.669(2), 1.668(2)</td>
<td>178.81(8)</td>
<td>169.0(1), 176.1(1)</td>
<td>Unassigned</td>
<td>70</td>
</tr>
<tr>
<td>UO₂[La₂F₃]₂(OSiEt₃)(dbm)(thf)</td>
<td>2.044(2)</td>
<td>1.664(2)</td>
<td>180.0</td>
<td>164.8(1)</td>
<td>Unassigned</td>
<td>70</td>
</tr>
<tr>
<td>UO₂[La₂F₃]₂(OSiMe₃)(dbm)(thf)</td>
<td>1.996(5), 1.986(5)</td>
<td>1.687(6), 1.682(6)</td>
<td>179.1(2)</td>
<td>154.9(4), 171.4(4)</td>
<td>Unassigned</td>
<td>46</td>
</tr>
<tr>
<td>[UO₂(µ₂-O)(Li₆⁺)]₂[Li₆⁺][µ(µ₂-O)(Li₆⁺)]</td>
<td>1.834(4), 1.879(5)</td>
<td>1.93(1), 1.94(2)</td>
<td>174.8(2)</td>
<td>167.3(4), 113.6(7)</td>
<td>Unassigned</td>
<td>35</td>
</tr>
<tr>
<td>[UO₂(µ₂-O)(Li₆⁺)]₂[µ(µ₂-O)(Li₆⁺)]</td>
<td>1.894(2), 1.859(2)</td>
<td>1.914(7), 1.979(7), 1.976(7)</td>
<td>174.2(1)</td>
<td>169.2(3), 123.8(2), 123.1(2)</td>
<td>704 (asym.)</td>
<td>35</td>
</tr>
<tr>
<td>[UO₂(µ₂-O)(Li₆⁺)]₂[µ(µ₂-O)(Li₆⁺)]</td>
<td>1.850(2), 1.921(2)</td>
<td>1.876(6), 2.016(7), 2.171(6), 2.027(7)</td>
<td>175.35(9)</td>
<td>174.0(3), 111.7(2), 142.8(2), 111.8(2)</td>
<td>Unassigned</td>
<td>35</td>
</tr>
<tr>
<td>[UO₂(µ₂-O)(Li₆⁺)]₂[µ(µ₂-O)(Li₆⁺)]</td>
<td>1.854(4), 2.034(4)</td>
<td>1.667(5)</td>
<td>176.0(2)</td>
<td>160.2(3)</td>
<td>860 (asym.)</td>
<td>71</td>
</tr>
<tr>
<td>[UO₂(µ₂-O)(Li₆⁺)]₂[µ(µ₂-O)(Li₆⁺)]</td>
<td>2.034(4), 2.099(4), 2.085(4), 2.040(4)</td>
<td>1.666(4), 1.665(4)</td>
<td>173.4(2), 174.9(2)</td>
<td>157.7(3), 155.1(3)</td>
<td>862, 802 (asym.)</td>
<td>45</td>
</tr>
<tr>
<td>[UO₂(µ₂-O)(Li₆⁺)]₂[µ(µ₂-O)(Li₆⁺)]</td>
<td>2.030(5), 2.081(5), 2.087(5), 2.039(5)</td>
<td>1.665(5), 1.664(5)</td>
<td>174.4(2), 176.7(2)</td>
<td>156.1(3), 155.5(3)</td>
<td>890-850 (asym.)</td>
<td>45</td>
</tr>
<tr>
<td>[(Me₃SiO)(µ₂-O)(THF)(ZnCl)₂(L₆⁺)]</td>
<td>1.84(1), 1.99(1)</td>
<td>1.70(1) (X = Si), 1.96(1) (X = Zn)</td>
<td>172.9(5)</td>
<td>160.2(8) (X = Si), 149.6(7) (X = Zn)</td>
<td>Unassigned</td>
<td>72</td>
</tr>
</tbody>
</table>
[\{py\}Cl2ZnO(U(py)\{Zn(py)\}(HL6)]
(82)

[\{py\}2ZnO(THF)\{Zn(py)\}(HL6)]
(83)

[\{\{Me6Si2\}MgO\{py\}\{Mg(py)\}(HL6)]
(84)

[\{Li(py)\}2(L-Me)]
(85)

[UO][AlMe3(py)](THF)2(H2L-Me)]
(86)

[UO][OUc3(py)](THF)2(H2L-Me)]
(87)

[UO][O(NpC3)(THF)2(H2L-Me)]
(88)

[UO][O(SnBu3)]2(L-Me)]
(89)

[UO][O(SnPh3)]2(L-Me)]
(90)

[UO][O(Li(py))\{O(Pr)\}(L-Me)]
(91)

[UO][O(Pr)]2(L-Me)]
(92)

[UO][O(Li)]2(L-Me)]
(93)

[UO][O(py)]2(L-Me)]
(94)

[UO][O(Pr)]2(L-Me)]
(95)

[UO][O(py)]2(L-Me)]
(96)

[UO][O(py)]2(L-Me)]
(97)

[UO][O(py)]2(L-Me)]
(98)

[UO][O(py)]2(L-Me)]
(99)

[UO][O(py)]2(L-Me)]
(100)

[UO][O(py)]2(L-Me)]
(101)

[UO][O(py)]2(L-Me)]
(102)

[UO][O(py)]2(L-Me)]
(103)

[UO][O(py)]2(L-Me)]
(104)

[UO][O(py)]2(L-Me)]
(105)

[UO][O(py)]2(L-Me)]
(106)

[UO][O(py)]2(L-Me)]
(107)

[UO][O(py)]2(L-Me)]
(108)

[UO][O(py)]2(L-Me)]
(109)

[UO][O(py)]2(L-Me)]
(110)

[UO][O(py)]2(L-Me)]
(111)

[\{py\}2LiUO(\mu-Ci)Sm(py)L-Me)]
(112)

[Cp*Co][UO2(dpaca)]
(113)

[UO2Sm(THF)2(L-Me)]
(114)

[UO2Sm(L-Me)]
(115)

[Unassigned: 72 73 74 47 48 75 72 74 74]
Table Footnotes: * = U–O bond lengths are provided for the trans-uranyl oxo ligands because they possess multiple bond character, whereas the U–O bond lengths corresponding to the uranyl oxo groups bound in a cis-arrangement within the bridging-oxo butterfly motif are not provided because they do not possess any multiple bond character and as a result are not representative of the uranium oxidation state; † reassigned or reclassified as unassigned in the light of more recent information on this and related complexes since the original publication appeared; ‡ averaged value due to two site disorder of the isopropyl carbon atoms. The compounds are numbered within Table 3 according to how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae.

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for the reductively functionalized mixed uranyl(V)/uranyl(VI) and uranyl(VI) complexes reported since 2010 and discussed in Section 3 (vide supra) are provided in Table 3, and their trends are discussed in more detail in Section 7 (vide infra).

4. FURTHER FUNCTIONALIZATION OF URANYL(V) COMPLEXES THAT RETAIN THE U(V) OXIDATION STATE

This section highlights reactions that further functionalize the oxo ligands of isolated uranyl(V) complexes, therefore retaining the U(V) oxidation state and do not involve reduction of uranyl(VI). In our experience, the majority of reactions of uranyl(V) complexes designed to further functionalize the oxo groups, for example by replacement of an alkali metal cation with a p-, d- or f-block cation, result in either spontaneous re-oxidation and isolation of the original uranyl(VI) complex, or in rare cases, to disproportionation to $\text{U}^{\text{IV}}\text{O}_2$ and $[\text{U}^{\text{VI}}\text{O}_2]^{2+}$. The success and diversity of the reactions outlined below is notable evidence of the maturity of this area, and it is now becoming possible to manipulate uranyl(V) complexes, despite their well-known kinetic instability, through the judicious choice of ligand design and selection of reaction conditions.

The readily available uranyl(V) starting complex, $\left\{\text{U}^{\text{V}}\text{O}_2\text{(py)}_5\right\}\{\text{KI}_2\text{(py)}_2\}$ (128), which was first reported in 2006,79,80 reacts with the K$_2$salan-tBu$_2$ ligand (H$_2$salan-tBu$_2 = \text{N}_2\text{N}^\prime$-bis(2-hydroxybenzyl-3,5-di-tert-butyl)-1,2-dimethylaminomethane) in pyridine to provide
polymeric \{K[U^{V}O_{2}(\text{salan-tBu}_{2})(py)]\}_{n} (129; Scheme 23) in which the uranyl(V) oxo groups are coordinated to K\(^{+}\) cations. Treatment of 128 or 129 with 18-c-6 in pyridine provides monomeric [U^{V}O_{2}(py)_{5}]I (130) and [K(18-c-6)][U^{V}O_{2}(\text{salan-tBu}_{2})(py)] (131), respectively (Scheme 22). The stability of 130 is remarkable considering the absence of coordinating cations and demonstrates the ability of pyridine to stabilize uranyl(V). 131 contains one potassium cation bound to 1 equiv. of 18-c-6 and one of the uranyl(V) oxo ligands.\(^{81}\)

Scheme 22. Synthesis of \{K[U^{V}O_{2}(\text{salan-tBu}_{2})(py)]\}_{n} (129) from \{[U^{V}O_{2}(py)_{5}]\{KI(py)_{2}\}\}_{n} (128) and K\(_{2}\text{salan-tBu}_{2}. 128 and 129 react with 18-c-6 to afford [U^{V}O_{2}(py)_{5}]I (130) and [K(18-c-6)][U^{V}O_{2}(\text{salan-tBu}_{2})(py)] (131), respectively. The K\(_{2}\text{salan-tBu}_{2} ligand is depicted at the bottom of the Scheme.\(^{81}\)

Adding KI to a solution of [Cp\(^{*}\)\(_{2}\)Co][U^{V}O_{2}(\text{salan-tBu}_{2})(py)] (132) in pyridine, which is prepared from [U^{VI}O_{2}(\text{salan-tBu}_{2})(py)] (133) and excess decamethylcobaltocene, also
affords polymeric 129. All three uranyl(V)-salan-'Bu₂ complexes, 129, 131 and 132 exhibit the same stability with respect to disproportionation in pyridine and DMSO, up to 30 days. However, polymeric 129 exhibits lower stability with respect to disproportionation compared to monomeric 131 in THF. Only 33 % of U(V) 129 remains after 14 days in THF whereas there is no loss of 131 after 30 days in THF, but 33% loss after 14 days in toluene solution. 81

When 128 was treated with the Schiff-base ligand, K₂salophen (H₂salophen = N,N'-phenylene-bis(salicylideneimine)), in pyridine, a mixture of disproportionation products was obtained. However, when a bulkier Schiff base ligand, K₂salophen-'Bu₂ (H₂salophen-'Bu₂ = N,N'-phenylene-bis(3,5-di-tert-butylsalicylideneimine)), was deployed, polymeric {K[U\text{V}O₂(salophen-'Bu₂)(py)]}_n (134-py) was obtained (Scheme 23), which is stable towards disproportionation for up to 30 days in pyridine, DMSO and toluene. This highlights the important effect that increasing the steric protection of the salophen ligand framework increases the stability of uranyl(V). If 134-py is dissolved in THF, the pyridine co-ligand bound to U is displaced by THF, forming {K[U\text{V}O₂(salophen-'Bu₂)(THF)]}_n (134-THF; Scheme 23). 81

Scheme 23. Synthesis of {K[U\text{V}O₂(salophen-'Bu₂)(py)]}_n (134-py) from [{U\text{V}O₂(py)}₅ {KI₂(py)}₂] (128) and K₂salophen-'Bu₂ in pyridine. Dissolving 134-py in THF provides {K[U\text{V}O₂(salophen-'Bu₂)(THF)]}_n (134-THF). The K₂salophen-'Bu₂ ligand is depicted in the bottom left corner of the Scheme. 81
The reactivity of 129 and 134-py with stoichiometric amounts of H₂O was also investigated, where 129 reacts slowly with 1 equiv. of H₂O to release free H₂salan⁻Bu₂; the reaction proceeds much quicker in the presence of 10 equiv. of H₂O, resulting in complete disappearance of uranyl(V) after 24 hours. Conversely, under similar conditions, ligand protonation and uranyl(V) oxidation is not observed in 134-py, indicating the salophen⁻Bu₂ ligand provides greater stability for uranyl(V) than the salan⁻Bu₂ ligand. The electronic structure, electronic spectroscopy, electrochemistry and magnetic properties of complexes 129-131, 133 and 134-py were studied in detail but are beyond the scope of this review.⁸¹

Complexes 129-132 and 134-THF possess U–O bond lengths that range from 1.846(9)-1.868(2) Å, which are in the expected range for uranyl(V) compounds, and maintain near linear O–U–O bond angles, which range from 177.14(8)-178.7(2)°.⁸¹

\[
\left\{\text{U}^\text{V}O_2(py)_5\right\}\{\text{KI}_2(py)_2\} (128)\text{ reacts with } \text{K}_2\text{salen (H}_2\text{salen} = N,N'\text{-ethylene-bis(salicylideneimine)}, \text{Scheme 24)} \text{ in the presence of 18-c-6 to afford tetrameric } [\text{K}(18\text{-c-6})]_2[\text{K}_2\{\text{U}^\text{V}O_2(\text{salen})\}^4] (135), \text{ or with } \text{K}_2\text{acacen (H}_2\text{acacen} = N,N'\text{-ethylene-bis(acetylacetonitrileimine), Scheme 24)} \text{ in the presence of either 18-c-6 or 2.2.2-cryptand to afford tetrameric } [\text{K}(R)]_2[\text{K}_2\{\text{U}^\text{V}O_2(\text{acecen})\}^4] (R = 18\text{-c-6 (136), 2.2.2-cryptand (137);}
\]
Scheme 24). While both reactions were successful with respect to retaining the UV oxidation state within the final product (i.e. stable with respect to disproportionation) the final products evaded isolation in the absence of 18-c-6 or 2.2.2-cryptand due to the formation of either polymeric or highly soluble species. Each UV center possesses pentagonal bipyramidal geometry, coordinated by the N\textsubscript{2}O\textsubscript{2} ligand donor set in the equatorial plane with the fifth coordination site occupied by an oxo group of a neighboring uranyl(V) ion, forming a T-shaped coordination geometry through oxo-bridging. The formation of the uranyl(V) tetrarimers 135-137 demonstrates the propensity for uranyl(V) to participate in oxo-bridging, the strength of which was highlighted by Pulsed-Field Gradient Stimulated Echo (PFGSTE) diffusion NMR spectroscopy in pyridine, in which calculating the Stokes radius of 135 and 137 relative to [UVIO\textsubscript{2}(salophen)(py)] (138, used as an external reference) indicated that the tetrametallic motif was maintained in pyridine solution. In addition, complexes 135-137 are stable with respect to disproportionation.78

Scheme 24. Synthesis of [K(18-c-6)]\textsubscript{2}[K\textsubscript{2}{UVO\textsubscript{2}(salen)}\textsubscript{4}] (135) and [K(R)]\textsubscript{2}[K\textsubscript{2}{UVO\textsubscript{2}(acecen)}\textsubscript{4}] (R = 18-c-6 (136), 2.2.2-cryptand (137)) from [{UVO\textsubscript{2}(py)}\textsubscript{5}{KI\textsubscript{2}(py)}\textsubscript{2}]\textsubscript{n} (128) and K\textsubscript{2}salen/2 equiv. of 18-c-6 or K\textsubscript{2}acecen/2 equiv. of 18-c-6/2.2.2-cryptand, respectively. The K\textsubscript{2}salen and K\textsubscript{2}acecen ligands are depicted in the bottom left corner of the Scheme.78
While 128 reacts cleanly with K₂salophen (H₂salophen = N,N'-phenylene-bis(salicylideneimine), Scheme 25) that has been pre-treated with 18-c-6 to afford [K(18-c-6)]₂[K₂(KI)₂{U⁵O₂(salophen)}₄] (138), it undergoes rapid disproportionation when reacted with K₂salophen in the absence of 18-c-6 (Scheme 25). This reactivity is remarkable given the similarities between the K₂salophen, K₂salen, and K₂acacen ligands. That said, once isolated, complex 138 is stable towards disproportionation for up to 30 days when re-dissolved in pyridine but undergoes complete disproportionation in 2 days in the presence of an excess of KI with respect to 18-crown-6 (0.1 equiv.) in pyridine. 138 was recrystallized as [K(18-c-6)(THF)₂]/{U⁵O₂(salophen)}₄(μ₈-K)₂(μ₅-KI)₂]I₂ from THF and exists as a tetrameric structure with T-shaped coordination with respect to the uranyl(V) dimer similarly to complexes 135-137. However, conversely to complexes 135-137, PGFSTE diffusion NMR spectroscopy indicated that 138 exists as a monomer in pyridine. Complex 138 may also be prepared from [Cp*₂Co]{U⁵O₂(salophen)(py}) (139; synthesized from [CoCp*₂] and [U⁵O₂(salophen)(py)]) and K(18-c-6)I; adding KI to a pyridine solution of 139 results in rapid disproportionation.⁷⁸

Scheme 25. Synthesis of [K(18-c-6)]₂[K₂(KI)₂{U⁵O₂(salophen)}₄] (138) from [{U⁵O₂(py)₅}{KI₂(py)}₂]₈ (128) and K₂salophen/18-c-6. The K₂salophen ligand is depicted at the bottom of the Scheme.⁷⁸
Complexes 136-138 possess uranyl(V) U–O bond lengths that range from 1.77(1)-1.973(9) Å, with the non-bridging U–oxo bond that is pointing away from the center of the tetramer significantly contracted relative to the bridging U–oxo bond (1.77(1)-1.871(4) Å vs. 1.91(1)-1.973(9) Å, respectively). In addition, the bridging U–O bond lengths within the [U^V O_2]^+···[U^V O_2]^+ units range from 2.344(9)-2.404(3) Å. In addition, 2 K^+ ions reside in the center of each tetramer and are coordinated to each of the endo-oxygen atoms, and remain bound to the uranyl oxo groups even in the presence of excess 18-c-6 or 2.2.2-cryptand. It is therefore clear that potassium plays a key role in the formation of complexes 136-138 and their resulting structural integrity. The presence of coordinating K^+ cations also has an electronic effect in which the uranyl(V) center is stabilized against oxidation by decreasing the amount of negative charge on the uranyl oxygen atoms. To gain further insight into the importance of K^+ coordination with respect to other alkali metal cations, [Cp^*_2Co][U^V O_2(salen)(py)] (140) was reacted with LiI, KI and RbI in the presence of 18-c-6 (Scheme 27). 140 reacts with KI/18-c-6 and RbI/18-c-6 to afford tetrameric 135 and [Rb(18-c-6)]_2[Rb_2[U^V O_2(salen)]_4] (141), respectively, which do not display any differences with
respect to their reactivity/stability; both complexes are stable in pyridine with respect to disproportionation. However, 140 reacts with LiI/18-c-6 to afford a mixture of disproportionation products (Scheme 26). The difference in reactivity between Li⁺, K⁺ and Rb⁺ may be attributed to the smaller size of Li⁺, as well as its higher ratio of charge/ionic radius compared to K⁺ and Rb⁺.

140 also reacts with 1 equiv. of [U^{VI}O_2(salen)(py)] (142) to yield the mixed-valence [U^{V}O_2]^+/[U^{VI}O_2]^{2+} complex, [Cp*₂Co][{U^{VI}O_2(salen)}{U^{V}O_2(salen)(py)}] (143). The U–O bond lengths for the U^{VI} center in 143 (1.79(1), 1.80(1) Å) are shorter than those for the U^{V} center (1.82(1), 1.93(1) Å) indicating that the valence of each U center is localized. Each U center is pentagonal bipyramidal, with the axial coordination sites occupied by the U–oxo groups and 4 of the equatorial coordination sites occupied by the salen ligand. In terms of the U^{V} center, the fifth equatorial coordination site is occupied by pyridine, whereas for the U^{VI} center it is occupied by a uranyl(V) oxo group; the uranyl(VI) and uranyl(V) ions in 143 participate in a T-shaped CCI similarly to complexes 135-138.

Scheme 26. Synthesis of [Cp*₂Co][{U^{VI}O_2(salen)}{U^{V}O_2(salen)(py)}] (143), [Rb(18-c-6)]₂[Rb₂{U^{V}O_2(salen)}₄] (141) and [K(18-c-6)]₂[K₂{U^{V}O_2(salen)}₄] (135) from [Cp*₂Co][U^{VI}O_2(salen)(py)] (140). 140 also reacts with LiI in pyridine to give a mixture of disproportionation products.
DFT studies on the mechanism of disproportionation of uranyl(V) in 135 in aqueous solution suggests that the protonation of a cation-cation intermediate is followed by electron transfer occurs to yield uranyl(VI), UIV aqua complexes, and water.5 This was supported experimentally, in which 135 was reacted with 1 equiv. of [HPy]Cl per uranium to immediately afford the disproportionation products [UVIIO2(salen)(py)] (142), [UIV(salen)2] (144) and [UIVCl2(salen)] (145) in a ratio of 6:2:3 (Scheme 27; H2O was also detected by 1H NMR spectroscopy). The important role played by protons in this mechanism is highlighted and confirms that protonation of one uranyl oxygen atom to form a better leaving group is a key step, given that the UIV disproportionation products no longer contain oxo ligands.78

Scheme 27. [K(18-c-6)]2[K2{UVIIO2(salen)}4] (135) reacts with [HPy]Cl to afford a mixture of disproportionation products.78
The tetranuclear complexes 135-137 give rise to well-resolved bands at 960 nm ($\varepsilon \sim 200 \text{ L mol}^{-1} \text{ cm}^{-1}$) in their respective UV-Vis-NIR spectra in pyridine. In contrast, 129 and 138 (vide supra) give rise to large, poorly resolved bands in the region of 800-1000 nm ($\varepsilon \sim 200 \text{ L mol}^{-1} \text{ cm}^{-1}$). These spectral differences could arise from the differences in symmetry between the two types of structures and could prove useful for detecting the presence of oxo-clusters in solution.78

The reactivity of [Cp*$_2$Co][U^V_2$\text(salen)(py)$] (140) with [CaCl$_2$(dme)] and Mn(NO$_3$)$_2$ has also been investigated. Complex 140 reacts with [CaCl$_2$(dme)] in a 2:1 ratio to provide tetrameric [Ca$_2${UV_2\text(salen)}$_4$] (146) and [Cp*$_2$Co]Cl as a reaction by-product. Complex 146 is structurally analogous to complexes 135-137 and 141, albeit with Ca$^{2+}$ cations in the center of the tetramer and no cations on the periphery (Scheme 28). The U–O bond lengths in 146 range from 1.79(1)-1.96(1) Å, in which the bridging UV–O bond is elongated relative to the terminal oxo. The O–U–O bond angles are 174.6(5) and 177.1(7)$^\circ$ and the U···O bond distances between the bridging uranyl(V) oxo groups and UV centers are 2.32(1) and 2.37(1) Å.82

Compound 140 also reacts with Mn(NO$_3$)$_2$ in a 2:1 ratio, in this case to form the molecular wheel-shaped [{MnII(py)$_3$}$_6${UV_2\text(salen)}$_{12}$] (147), along with [Cp*$_2$Co][NO$_3$] as a reaction by-product (Scheme 28). Complex 147 is held together by CCIs between the uranyl(V) oxo groups and the MnII ions, as opposed to the UV center of a neighboring uranyl(V) ion, as is the case in complexes 135-137, 141 and 146 (vide supra). Six of the uranyl(V) ions in 147 form Mn-oxo-bridges through both uranyl oxo atoms, whereas the other
six form bridges through just one oxo ligand. The U–O bond lengths range from 1.79(2)-1.90(2) Å, the O–U–O bond angles range from 169.9(6)-176.5(9)° and the Mn···O bridging distances range from 2.12(2)-2.18(2) Å. The structural motif seen in 147 is likely a consequence of the 2:1 [U\text{V}O_2]^+:[{\text{Mn}^\text{II}}]^{2+} ratio, the 2+ charge of the Mn\text{II} ion and the preference of Mn\text{II} to adopt an octahedral coordination geometry. As a result, the [U\text{V}O_2]^+:···Mn\text{II} interactions in 147 play a structure-directing role. The magnetic properties of complexes 146 and 147 have also been studied.82

Scheme 28. Synthesis of [Ca\text{II}2\{U\text{V}O_2(salen)\}_4] (146) and [{\text{Mn}^\text{II}}(py)_3\{U\text{V}O_2(salen)\}]_{12} (147) from [Cp^*\text{Co}]\{U\text{V}O_2(salen)(py)\} (140) and [CaCl\text{II}2(dme)] and Mn(NO_3)\text{II}_2, respectively.82
Polymeric \([\text{U}^\text{V}\text{O}_2(\text{Mesaldien})\text{K}]_n\) (Mesaldien = \(N,N^\prime\)-(2-aminomethyl)diethylenebis(salicylideneimine); 148) can be obtained from the K₂Mesaldien and 128 and possesses U–O bond lengths ranging from 1.79(2)-1.86(2) Å, indicating that the U\(^\text{V}\) oxidation state is maintained. Complex 148 (6 equiv.) reacts with \([\text{U}^\text{IV}I_4(\text{OEt}_2)_2]\) (3 equiv.) in the presence of K₂Mesaldien (3 equiv.) in pyridine to afford tetrameric \({\{[\text{U}^\text{V}\text{O}_2(\text{Mesaldien})\}}\{\text{U}^\text{IV}(\text{Mesaldien})\}\}_2(\mu-\text{O})\) (149) along with uranyl(VI), \([\text{U}^\text{VI}\text{O}_2(\text{Mesaldien})]\) (150), from partial disproportionation (Scheme 29). Complex 149 is made up of two uranyl(V)-Mesaldien/U\(^\text{IV}\)-Mesaldien units connected by a bridging oxo ligand. The U–O bond lengths in the uranyl(V) fragment are 1.82(1) and 2.00(1) Å, and the O–U–O unit retains its linearity (176.5(6)°).\(^{50}\)

Scheme 29. Synthesis of \({\{[\text{U}^\text{V}\text{O}_2(\text{Mesaldien})\}}\{\text{U}^\text{IV}(\text{Mesaldien})\}\}_2(\mu-\text{O})\) (149) and \([\text{U}^\text{VI}\text{O}_2(\text{Mesaldien})]\) (150) from \([\text{U}^\text{V}\text{O}_2(\text{Mesaldien})\text{K}]_n\) (148), K₂Mesaldien and \([\text{U}^\text{IV}I_4(\text{OEt}_2)_2]\). The K₂Mesaldien ligand is depicted in the bottom left corner of the Scheme.\(^{50}\)

Complex 128 also reacts with the KL\(^\text{nacnac}\) ligand (KL\(^\text{nacnac}\) = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate) in pyridine to afford the uranyl(V) trimer, \([\text{U}^\text{V}\text{O}_2(\text{L}^\text{nacnac})]\)_3 (151; Scheme 30). Each U\(^\text{V}\) center possesses pentagonal bipyramidal geometry, coordinated by one equivalent of the tetradentate β-diketiminate ligand in the equatorial plane with the fifth coordination site occupied by an oxo group of a neighboring uranyl(V) ion. PFGSTE diffusion NMR spectroscopy in pyridine indicated that the trimetallic motif is maintained in solution. However, dissolution of 151 into DMSO does result in partial dissociation of the trimer.\(^{51}\)
The U–O bond lengths in 151 range from 1.84(1)-1.940(8) Å, and the O–U–O bond angles range from 176.4(3)-176.7(4)°. Complex 151 reacts with oxidizing agents, forming uranyl(VI) [UVIO\textsubscript{2}Cl(Lnacnac)] (152) when dissolved in CH\textsubscript{2}Cl\textsubscript{2} through chloride abstraction from the solvent, or [{UVIO\textsubscript{2}(Lnacnac)\textsubscript{2}(µ-O)] (153) when treated with dry O\textsubscript{2} in acetonitrile (Scheme 30). The U–O bond lengths range from 1.757(9)-1.82(1) Å in 152 and 153, the shorter of these in agreement with UV→UVI oxidation, although those around 1.8 Å are remarkably long for a formal UVI oxidation state and the oxo-group reactions of these complexes may warrant further study.51

Scheme 30. Synthesis of [UVO\textsubscript{2}(Lnacnac)\textsubscript{3}] (151) from KLnacnac and [{UVO\textsubscript{2}(py)\textsubscript{5}}{KI\textsubscript{2}(py)\textsubscript{2}}\textsubscript{n} (128). 151 reacts further with CH\textsubscript{2}Cl\textsubscript{2} or dry O\textsubscript{2} to afford [UVIO\textsubscript{2}Cl(Lnacnac)] (152) and [{UVIO\textsubscript{2}(Lnacnac)\textsubscript{2}(µ-O)] (153), respectively.51

A series of trimetallic 3d-5f and 4d-5f complexes featuring the uranyl(V) ion, [UVO\textsubscript{2}]+ have also been prepared to target single molecule magnetism in uranyl(V)-containing complexes, given its highly anisotropic nature and potential for magnetic exchange through metal–O–UV linkages.83-85
Scheme 31. Synthesis of MII-OUVO-MII and CoII-OUVO complexes,
\[{\text{U}^\text{V} \text{O}_2(\text{Mesaldien})} \{\text{M}^{\text{II}}\text{X}(\text{TPA})\}_2\} \text{X} \text{ (M = Fe, X = Cl (154); M = Mn, X = I (155); M = Cd, X = I (156)) and [} \{\text{U}^\text{V} \text{O}_2(\text{Mesaldien})} \{\text{Co}^{\text{II}}(\text{TPA})\}\} \text{I (157), featuring uranyl(V).}^{83-85}

\[\text{[U}^\text{V} \text{O}_2(\text{Mesaldien})\text{K]}_n \ (148) \text{ reacts with 2 equiv. of a 3d- or 4d-metal complex of the tetridentate tris(pyridyl)amine ligand, TPA (TPA = tris(2-pyridylmethyl)amine), to afford the trimetallic M}^{\text{II}}\text{-OU}^{\text{V}}\text{O-M}^{\text{II}} \text{ complexes, [} \{\text{U}^\text{V} \text{O}_2(\text{Mesaldien})} \{\text{M}^{\text{II}}\text{X}(\text{TPA})\}_2\} \text{X} \text{ (M = Fe, X = Cl (154); M = Mn, X = I (155); M = Cd, X = I (156); Scheme 32). Treatment of 148 with 1 equiv. of [Co}^{\text{II}}_2(\text{TPA})\text{] affords bimetallic [} \{\text{U}^\text{V} \text{O}_2(\text{Mesaldien})} \{\text{Co}^{\text{II}}(\text{TPA})\}\} \text{I (157, Scheme 31).}^{83-85}

Scheme 32. Synthesis of MII-OUVO-MII complexes,
\[{\text{M}^{\text{II}}(\text{BPPA})(\text{L})} \{\text{U}^\text{V} \text{O}_2(\text{Mesaldien})} \{\text{M}^{\text{II}}(\text{BPPA})(\text{py})\}\} \text{I (M = Ni, L = py (158); M = Fe, L = py (159); M = Co, L = vacant coordination site (160)), featuring uranyl(V).}^{83,85}
Trimetallic M^{II}-OU^{V}-OM^{II} complexes may also be obtained from polymeric $[\text{U}^{\text{V}}\text{O}_2(\text{Mesaldien})\text{K}]_n$ and 2 equiv. of $[\text{M}^{\text{II}}\text{(BPPA)}]$ (BPPA = bis(2-picolyl)(2-oxybenzyl)amine), affording $[\{\text{M}^{\text{II}}\text{(BPPA)}(\text{L})\} \{\text{U}^{\text{V}}\text{O}_2(\text{Mesaldien})\} \{\text{M}^{\text{II}}\text{(BPPA)}(\text{py})\}]_X$ (M = Ni, L = py (158); M = Fe, L = py (159); M = Co, L = vacant coordination site (160); Scheme 32).\(^{83,85}\)

Scheme 33. Synthesis of polymeric M^{II}-OU^{V}O complexes, $[\{\text{U}^{\text{V}}\text{O}_2(\text{salen})(\text{py})\} \{\text{M}^{\text{II}}(\text{py})_4\}(\text{NO}_3)]_n$ (M = Cd (161); M = Mn (162)), of uranyl(V).\(^{86}\)

Alternatively, the uranyl(V) complex $[\text{Cp}^*\text{Co}[\text{U}^{\text{V}}\text{O}_2(\text{salen})(\text{py})]]$ (140) reacts with the simple 3d or 4d metal precursors $[\text{M}^{\text{II}}(\text{NO}_3)_2]$ to yield polymeric $[\{\text{U}^{\text{V}}\text{O}_2(\text{salen})(\text{py})\} \{\text{M}^{\text{II}}(\text{py})_4\}(\text{NO}_3)]_n$ (M = Cd (161); M = Mn (162); Scheme 33),\(^{86}\) while $[\text{Cp}^*\text{Co}[\text{U}^{\text{V}}\text{O}_2(\text{Mesaldien})]]$ (163) reacts with $[\text{Mn}^{\text{II}}(\text{NO}_3)_2(\text{py})_2]$ to afford polymeric $[[\text{U}^{\text{V}}\text{O}_2(\text{Mesaldien})][\text{Mn}^{\text{II}}(\text{NO}_3)(\text{py})_2]]_n$ (164).\(^{87}\) Complexes 154-161 and 164 all contain the uranyl(V) ion with U–O bond lengths and O–U–O bond angles ranging from 1.837(3)-1.934(3) Å and 171.6(2)-178.7(5)°, respectively, and possess bridging M^{II}–O–U^{V}–O–M^{II} interactions between cationic M^{II} and anionic U^{V} fragments.\(^{83-87}\)
It has also been shown that the dipotassium salt of a ferrocene-based tetradentate Schiff-base ligand, K_2salfen-tBu$_2$, reacts with $\{[U^{IV}\text{O}_2(py)_3]\{K[I_2(py)_2]\}_n$ (128) to afford $\{[K(18\text{-c}-6)U^{IV}\text{O}_2(salfen}-tBu_2]\}$ (165, Scheme 34), which possesses U–O and U–O$_K$ bond lengths of 1.831(4)/1.838(4) and 1.853(4)/1.860(4) Å, respectively, and O–U–O bond angle of 176.8(2)/177.5(2)o for two crystallographically independent molecules within the unit cell. K_2salfen-tBu$_2$ also reacts with $[U^{VI}\text{O}_2I_2(py)_3]$ (166-py) to yield $[U^{VI}\text{O}_2(salfen}-tBu_2]$ (167). If the less bulky K_2salfen (in which the tert-butyl groups are replaced with hydrogen atoms) is used a mixture of U(IV) and $[U^{VI}\text{O}_2]^{2+}$ species are formed over 12 hours through disproportionation of a transiently formed uranyl(V) species.52

Scheme 34. Synthesis of $\{[K(18\text{-c}-6)U^{IV}\text{O}_2(salfen}-tBu_2]\}$ (165) from $\{[U^{IV}\text{O}_2(py)_3]\{K[I_2(py)_2]\}_n$ (128) and K_2salfen-tBu$_2$. 52

$\{[U^{IV}\text{O}_2(py)_3]\{K[I_2(py)_2]\}_n$ (128) also reacts with K_2dpaea in the presence of 2.2.2-cryptand in pyridine to yield the uranyl(V) complex, $[K(2.2.2\text{-crypt})][U^{IV}\text{O}_2(dpaea)]$ (168; Scheme 35). Uranyl(V) 168 possesses a O–U–O bond angle 176.06(8)o, U–O bond lengths of 1.837(2) and 1.847(2) Å and an asymmetric stretching frequency of 794 cm$^{-1}$. Complex 168 is stable in aprotic solvents for up to 4 months, or until the addition of 1 equiv. of [HPy]OTf (in DMSO), which results in disproportionation; X-ray quality crystals of the UIV species, $[U^{IV}(dpaea)_2]$ (169), were isolated from this reaction. Analogously to $[\text{Cp}^*\text{Co}][U^{IV}\text{O}_2(dpaea)]$ (122), introduced in Section 3, once isolated 168 is stable against disproportionation when dissolved in D$_2$O. Complex 168 (7-15 mM, pH = 9.2-10) is in fact stable in D$_2$O for up to 2 weeks, but slowly begins to precipitate from solution.
after this point. Small amounts of the disproportionation products begin to appear after 5 days in D$_2$O (16 mM of 168, pH = 7), and more than 80 % of 168 has undergone disproportionation after 2 days in 20 mM D$_2$O solutions at pH = 6. These results indicate that 168 is stable in aqueous solutions with a pH between 7 and 10, and that acid-induced disproportionation of 168 occurs rapidly in organic solutions in the presence of stoichiometric amounts of a proton source. CV studies on 168 indicate that the UVI/UV redox couple (E$_{1/2}$ = −1.25 V vs. Fc/Fc$^+$) is reversible in pyridine but irreversible in aqueous solution (0.02 M HEPES buffered water solution, pH = 7; UV/UVI oxidation occurs at E = −0.16 to 0.00 V vs. Ag/AgCl, UVI/UV reduction occurs at E = −1.56 to −1.65 V vs. Ag/AgCl); the UV/UIV redox couple is not observed in aqueous solution. The different electrochemical behavior of 168 in pyridine versus aqueous solution has been attributed to U–OH$_2$ binding and/or the potential for proton exchange reactions to occur.48

Scheme 35. Synthesis of [K(2.2.2-crypt)][UVO$_2$(dpaea)] (168) from [{UVO$_2$(py)$_5$}{KI$_2$(py)$_2$}]$_n$(128), K$_2$dpaea and 2.2.2-cryptand (see Scheme 20 in Section 3 for a depiction of H$_3$dpaea).48

48 [{UVO$_2$(py)$_5$}{KI$_2$(py)$_2$}]$_n$ (128) also reacts with K$_3$trensal (H$_3$trensal = 2,2′,2″-tris(salicylideneimino)triethylamine), to afford K[UVO$_2$(trensal)K] (170, Scheme 36a). Treating 170 with 2.2.2-cryptand allows for isolation of [K(2.2.2-crypt)$_2$][UVO$_2$(trensal)] (171), in which one of the U–oxo groups is coordinated to a K$^+$ cation (Scheme 36b; U–O = 1.82(2) Å, U–OK = 1.87(2) Å). Alternatively, 170 reacts with 1 or 1.5 equiv. of FeI$_2$ in pyridine to substitute the K$^+$ cation for a coordinated FeII fragment to afford [UVO$_2$(trensal)FeII(py)$_3$] (172; U–O = 1.837(3) Å, U–OF$_{Fe}$ = 1.930(2) Å) and 0.5 equiv. of [{UVO$_2$(trensal)FeII(py)$_3$}$_2$FeII(py)$_3$]I$_2$ (173; U–O = 1.920(4)-1.935(4) Å), respectively (Scheme 36c and 36d). Both complexes 172 and 173 possess contracted U–O bond lengths at the unfunctionalized oxo group compared with the functionalized oxo group. Complex 170
also reacts with [U\text{IV}(\text{trensal})]I to afford [U\text{V}O_2(\text{trensal})\text{Fe}^{\text{II}}(\text{py})_3\text{U}^{\text{IV}}(\text{trensal})]I (174; Scheme 36e), which possesses a contracted Fe\text{II}-functionalized U–O bond length (1.922(6) Å) relative to the U\text{IV}-functionalized U–O group (1.960(6) Å). Complexes 171-174 possess O–U–O bond angles that range from 173.7(6)-177.2(2)°. Remarkably, complexes 172-174, which exhibit Fe\text{II} functionalization of a uranyl-oxo group, demonstrate increased stability with respect to proton-induced disproportionation. Complex 172 reacts with 2 equiv. of pyridinium chloride ([H\text{Py}]\text{Cl}) to afford 174, a product of partial disproportionation which possesses a Fe\text{II}[[\text{OU}^{\text{V}}\text{O}]^{+}\text{U}^{\text{IV}}] core, whereas complexes 170 and 171 react with 2 equiv. of [H\text{Py}]\text{Cl} to yield U\text{IV} and [U\text{VI}O_2]^{2+} complexes via complete disproportionation. Furthermore, redox reactivity and CV experiments display an increased range of stability for the uranyl(V) species functionalized by Fe\text{II} with respect to both oxidation and reduction reactions. As Fe\text{II}-containing minerals are known to participate in [U\text{VI}O_2]^{2+} reduction and stabilization of uranyl(V) species with its exact role remaining ambiguous, these results shed light on the function of iron in the environmental mineral-mediated reduction of U\text{VI}.66

Scheme 36. Synthesis of (a) K[U\text{V}O_2(\text{trensal})K] (170) from [{U\text{V}O_2(\text{py})}_3\{\text{KI}_2(\text{py})_2\}]_n (128) and K_3\text{trensal}, followed by conversion into (b) [K(2.2.2-crypt)]_2[U\text{V}O_2(\text{trensal})] (171), (c) [U\text{V}O_2(\text{trensal})\text{Fe}^{\text{II}}(\text{py})_3] (172), (d) [{U\text{V}O_2(\text{trensal})\text{Fe}^{\text{II}}(\text{py})_3}\text{Fe}^{\text{II}}(\text{py})_3\text{I}_2] (173) and (e) [U\text{V}O_2(\text{trensal})\text{Fe}^{\text{II}}(\text{py})_3\text{U}^{\text{IV}}(\text{trensal})]I (174) by treatment with 2.2.2-cryptand, 1 and 1.5 equiv. of FeI_2 and 1 equiv. of [U\text{IV}(\text{trensal})], respectively.66
While \([\{\text{U}^{\text{V}}\text{O}_2\text{py}\}_3\{\text{KI}_2\text{py}\}_2\}]_n\) (128) has been used as an effective starting uranyl(V) complex for further oxo-functionalization while maintaining the uranyl(V) oxidation state, it has been demonstrated to undergo immediate disproportionation in the presence of benzoic acid in pyridine, forming the hexanuclear U\text{IV}-benzoate cluster, \([\text{U}^{\text{IV}}\text{O}_4\text{OH}_4\text{PhCOO}_12\text{py}_3]\) (175), and the uranyl(VI) complex, \([\text{U}^{\text{VI}}\text{O}_2\text{PhCOO}_2\text{py}_2]\) (176). Water, pyridinium iodide and KI are formed as by-products during this reaction.\(^{53}\)

The synthesis of \([\text{U}^{\text{V}}\text{O}\{\text{OAlR}_2\text{py}\}(\text{H}_2\text{L}^{\text{Me}})]\) (R = Me (87), iBu (88); Scheme 16 in Section 3) from the uranyl(VI) Pacman complex 11-py and \([\text{Cp}_2\text{TiCl(CH}_2\text{)AlMe}_2]\) and HAl'Bu\(_2\), respectively, was discussed previously in Section 3. The oxo-coordinated -AlR\(_2\) group in 87 or 88 is
readily replaced by Group 1 metal cations by treatment with alkyl lithium reagents (MeLi, (Me$_3$Si)$_2$CHLi, Me$_3$SiCH$_2$Li) in C$_6$D$_6$ to provide [(OU$_V^O$)Li(py)(H$_2$LMe)$_2$] (177; Scheme 37a).

Alternatively, 87 and 88 react with LiH in pyridine to afford a trilithiated complex, [UV_O{OLi(py)$_3$}(py){Li(py)$_2$LMe}] (60-py; Scheme 37b and Scheme 9 in Section 3), or with NaH or KH in pyridine to provide [UV_O{OM(py)$_3$}(py)(H$_2$LMe)] (M = Na (178), K (179); Scheme 37c). Furthermore, 177 may be converted into [UV_O{OLi(py)$_3$}(py)(H$_2$LMe)] (180) through the addition of pyridine (Scheme 37d). This reactivity contrasts that of the uranyl(VI) complex 11-py, in which deprotonation of the acidic pyrrole NH groups occurs instead of transmetalation of the oxo-coordinated functional group, suggesting that hydrogen-bonding between the uranyl endo-oxo group and the pyrrole protons is significant enough to negate deprotonation.

Scheme 37. Transmetalation of the oxo-coordinated -AlR$_2$ group with Group 1 metal cations using either alkyl lithium reagents affording (a) [(OU$_V^O$)Li(py)(H$_2$LMe)$_2$] (177), or Group 1 metal hydrides providing (b) [UV_O{OLi(py)$_3$}(py){Li(py)$_2$LMe}] (60-py) and (c) [UV_O{OM(py)$_3$}(py)(H$_2$LMe)] (M = Na (178), K (179)). The addition of pyridine to 177 provides (d) [UV_O{OLi(py)$_3$}(py)(H$_2$LMe)] (180).

Interestingly, this clean substitution of the AlR$_2$ group has enabled the development of a one-pot, DIBAL-catalyzed reduction of the U(VI) uranyl complexes to all three mono-alkali metal
uranyl(V) complexes 178-180 (Scheme 38). This DIBAL-catalyzed route could also have applications in d-block metal oxo chemistry.73

Scheme 38. Complexes 178-180 may be prepared catalytically from HAli(Bu)$_2$ (10 mol %) and excess MH (M = Li, Na, K) in toluene ($70 \, ^0\text{C}$, 3-4 days).73
Table 4. Structural and spectroscopic data for functionalized uranyl(V) complexes reported since 2010 and discussed in Section 4. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[K(18-c-6)][UO₂(salan-‘Bu’)(py)]</td>
<td>1.853(2), 1.868(2)</td>
<td>2.651(3)</td>
<td>177.4(1)</td>
<td>138.0(1)</td>
<td>Unassigned*</td>
<td>81</td>
</tr>
<tr>
<td>[Cp²Co][UO₂(salan-‘Bu’)(py)]</td>
<td>1.846(9), 1.866(9)</td>
<td>–</td>
<td>178.7(4)</td>
<td>–</td>
<td>Unassigned</td>
<td>81</td>
</tr>
<tr>
<td>[[K(THF)]₃[UO₂(salophen-‘Bu’)(THF)]₄</td>
<td>1.853(2), 1.850(2)</td>
<td>2.630(2), 2.685(2)</td>
<td>177.14(8)</td>
<td>144.55(9), 115.75(9)</td>
<td>Unassigned</td>
<td>81</td>
</tr>
<tr>
<td>[K(18-c-6)][K₂[UO₂(acacen)]₄</td>
<td>1.85(1), 1.94(1), 1.86(1), 1.973(9)</td>
<td>X = K: 2.65(1), 2.89(1), 3.06(1), 2.88(1), 2.93(1) X = U: 2.40(1), 2.344(9)</td>
<td>177.4(5), 179.3(4)</td>
<td>X = K: 137.7(5), 96.4(5), 88.2(3), 94.1(4), 84.1(4), 97.1(4), 96.2(3), 89.4(3) X = U: 175.0(7), 172.2(6)</td>
<td>Unassigned</td>
<td>78</td>
</tr>
<tr>
<td>[K(2.2.2-crypt)][K₂[UO₂(acacen)]₄</td>
<td>1.77(1), 1.91(1), 1.799(9), 1.91(1)</td>
<td>X = K: 2.907(8), 3.05(1), 2.885(9), 3.118(9) X = U: 2.40(1), 2.40(1)</td>
<td>179.3(4), 179.2(4)</td>
<td>X = K: 97.4(3), 89.2(3), 95.5(3), 84.1(3), 98.6(3), 87.7(3), 93.2(3), 84.7(3) X = U: 173.4(5), 173.4(4)</td>
<td>Unassigned</td>
<td>78</td>
</tr>
<tr>
<td>[Rb(18-c-6)][Rb₂[UO₂(salen)]₄</td>
<td>1.84(1), 1.928(9), 1.882(8), 1.909(9)</td>
<td>X = Rb: 3.065(8), 3.154(9), 3.04(1), 3.41(1), 2.742(9) X = U: 2.414(9), 2.419(9)</td>
<td>175.3(3), 177.1(5)</td>
<td>X = Rb: 100.3(3), 86.9(3), 95.0(3), 88.7(3), 97.6(4), 88.6(3), 91.0(4), 82.3(3), 148.1(6) X = U: 171.2(4), 171.2(6)</td>
<td>Unassigned</td>
<td>78</td>
</tr>
<tr>
<td>[Ca₂[UO₂(salen)]₄</td>
<td>1.80(1), 1.96(1), 1.79(1), 1.93(1)</td>
<td>X = Ca: 2.553(1), 2.81(1), 2.56(1), 2.83(2)</td>
<td>174.6(5), 177.1(7)</td>
<td>X = Ca: 102.0(5), 92.0(4), 102.2(5), 91.9(5), 756 (asym.)</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Formula</td>
<td>X = UO$_2^+$; 2.32(1), 2.37(1)</td>
<td>176.1(6), 169.9(6), 171.4(7), 176.5(9), 172.4(6), 175.2(8)</td>
<td>155.6(8), 145.9(7), 167.8(9), 169.1(9), 148.0(8), 154.2(8), 169.8(8), 147.4(8), 156.6(8)</td>
<td>752 (asym.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{Mn(py)$_2$}]$_6$[UO2(salen)${12}$] (147)</td>
<td>1.85(1), 1.88(1), 1.87(1), 1.88(2), 1.89(1), 1.89(1), 1.84(2), 1.89(2), 1.90(1), 1.90(2), 1.79(2), 1.90(2)</td>
<td>2.15(1), 2.18(2), 2.17(2), 2.18(2), 2.12(2), 2.17(1), 2.12(2), 2.18(2), 2.12(2)</td>
<td>174.1(9), 177.4(9)</td>
<td>151(1), 108.9(7), 154(1), 103.3(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[UO$_2$(Mesaldien)K]$_n$ (148)</td>
<td>1.79(2), 1.86(2), 1.79(2), 1.83(2)</td>
<td>2.63(2), 2.80(2), 2.72(2), 2.82(2)</td>
<td>174.5(6)</td>
<td>162.8(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{(UO$_2$(Mesaldien))}2(p-O)]${149}$</td>
<td>1.82(1), 2.00(1)</td>
<td>2.20(1)</td>
<td>176.5(6)</td>
<td>Unassigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[UO2(L${mes}^{-}$)]$_{151}$</td>
<td>1.84(1), 1.91(1), 1.844(9), 1.940(8), 1.820(8), 1.906(8)</td>
<td>2.374(8), 2.371(9), 2.356(9)</td>
<td>176.7(4), 176.4(3), 176.7(4)</td>
<td>157.1(5), 156.4(4), 154.9(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{FeCl(TPA)}]$_2$I (154)</td>
<td>1.917(4), 1.877(4)</td>
<td>1.998(4), 2.132(4)</td>
<td>174.8(2)</td>
<td>163.8(2), 175.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{MnI(TPA)}]$_2$I (155)</td>
<td>1.91(1), 1.90(1)</td>
<td>2.05(1), 2.06(1)</td>
<td>175.7(4)</td>
<td>Unassigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{CdI(TPA)}]$_2$I (156)</td>
<td>1.89(2)</td>
<td>2.20(2)</td>
<td>172.7(8)</td>
<td>Unassigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{Co(TPA)}]$_2$I (157)</td>
<td>1.837(3), 1.934(3)</td>
<td>1.924(3)</td>
<td>175.0(2)</td>
<td>151.5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{Ni(BPPA)(py)}]$_2$I (158)</td>
<td>1.896(5), 1.891(5)</td>
<td>2.068(5), 2.026(5)</td>
<td>175.0(2)</td>
<td>174.4(3), 168.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{Fe(BPPA)(py)}]$_2$I (159)</td>
<td>1.917(4), 1.895(4)</td>
<td>2.006(4), 2.049(4)</td>
<td>174.1(2)</td>
<td>167.9(3), 168.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)}{Co(BPPA)}]$_2$I (160)</td>
<td>1.913(6), 1.897(6)</td>
<td>1.983(6), 2.037(7)</td>
<td>173.8(3)</td>
<td>175.2(4), 170.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(salen)(py)}{Cd(NO3)(py)${4}$}]$_n$ (161)</td>
<td>1.87(1), 1.88(1), 1.88(1), 1.88(1), 1.87(1), 1.89(1)</td>
<td>2.30(1), 2.28(1), 2.30(1), 2.34(1), 2.34(1), 2.32(1), 2.30(1)</td>
<td>178.7(5), 177.5(5), 178.7(5)</td>
<td>173.5(6), 161.8(7), 166.0(7), 170.0(6), 175.1(7), 162.8(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CoCp*$_2$][UO$_2$(Mesaldien)] (163)</td>
<td>1.845(8), 1.846(8)</td>
<td>–</td>
<td>171.5(4)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO$_2$(Mesaldien)][Mn(NO3)(py)${4}$}]$_n$ (164)</td>
<td>1.900(3), 1.910(3)</td>
<td>2.066(3), 2.090(4)</td>
<td>171.6(2)</td>
<td>164.4(2), 177.2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{K(18-c-6)}UO$_2$(salfen-Bu$_2$)] (165)</td>
<td>1.831(4), 1.853(4), 1.838(4), 1.860(4)</td>
<td>2.568(4), 2.791(4)</td>
<td>176.8(2), 177.5(2)</td>
<td>150.7(2), 110.2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[K(2.2.2-crypt)][UO$_2$(dpaec)] (168)</td>
<td>1.837(2), 1.847(2)</td>
<td>–</td>
<td>176.06(8)</td>
<td>–</td>
<td>794 (asym.)</td>
<td></td>
</tr>
<tr>
<td>[K(2.2.2-crypt)][UO$_2$(trens)] (171)</td>
<td>1.87(2), 1.82(2)</td>
<td>2.83(2)</td>
<td>173.7(6)</td>
<td>160.0(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[UO2(trens)Fe(py)${3}$] (172)</td>
<td>1.837(3), 1.930(2)</td>
<td>2.018(3)</td>
<td>177.1(1)</td>
<td>173.5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[{UO2(trens)Fe(py)${3}$}]2[Fe(py)${3}$]I$_2$ (173)</td>
<td>1.920(4), 1.935(4), 1.927(4), 1.927(5)</td>
<td>2.067(4), 1.984(4), 1.992(5), 2.055(5)</td>
<td>175.5(2), 175.3(2)</td>
<td>173.2(2), 166.6(3), 153.1(3), 171.1(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Footnotes:

<table>
<thead>
<tr>
<th>Compound</th>
<th>U–O bond lengths (Å)</th>
<th>O–U–O bond angle (°)</th>
<th>O–U–X bond angles (°)</th>
<th>Other Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{UO}_2\text{trensal}]\text{Fe(py)}\text{U(trensal)}]</td>
<td>1.960(6), 1.922(6)</td>
<td>2.317(6) (X = U), 2.144(6) (X = Fe)</td>
<td>177.2(2)</td>
<td>Unassigned</td>
</tr>
<tr>
<td>([\text{UO}_2\text{Li(py)}(\text{H}_2\text{L}^\text{Me})]]</td>
<td>1.908(2), 1.891(2)</td>
<td>1.901(7)</td>
<td>177.7(1)</td>
<td>894 (asym.)</td>
</tr>
<tr>
<td>([\text{UO}_2\text{Na(py)}_3]\text{py}(\text{H}_2\text{L}^\text{Me})]]</td>
<td>1.844(5), 1.856(7)</td>
<td>2.15(2), 2.28(2)*</td>
<td>174.2(3)</td>
<td>891 (asym.)</td>
</tr>
<tr>
<td>([\text{UO}_2\text{OK(py)}_3]\text{py}(\text{H}_2\text{L}^\text{Me})]]</td>
<td>1.871(2), 1.837(2)</td>
<td>2.70(7)(3)</td>
<td>176.1(1)</td>
<td>894 (asym.)</td>
</tr>
<tr>
<td>([\text{UO}_2\text{OLi(py)}_3]\text{py}(\text{H}_2\text{L}^\text{Me})]]</td>
<td>1.853(6), 1.884(7)</td>
<td>1.94(2)</td>
<td>173.8(3)</td>
<td>891 (asym.)</td>
</tr>
</tbody>
</table>

* reassigned or reclassified as unassigned in the light of more recent information on this and related complexes since the original publication appeared; * two values are provided due to two site disorder of the Na cation. The compounds are numbered within Table 4 according to how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae.

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for the functionalized uranyl(V) complexes reported since 2010 and discussed in Section 4 (*vide supra*) are provided in Table 4, and their trends are discussed in more detail in Section 7 (*vide infra*).
5. U^{VI}→U^{IV} REDUCTIVE FUNCTIONALIZATION

The treatment of the trianionic pyridine(diamine) uranium(IV) complexes [Cp*U^{IV}(MesPDI_{Me})(L)] ($^{\text{MesPDI}_{Me}} = 2,6-((\text{Mes})\text{N}=\text{CMe})_2\text{C}_5\text{H}_3\text{N}$; L = THF or $^{(\text{Me}_2\text{N})_3}\text{PO}$) and [Cp*U^{IV}(Bu-MesPDI_{Me})(\text{THF})] ($^{\text{Bu-MesPDI}_{Me}} = 2,6-((\text{Mes})\text{N}=\text{CMe})_2-p-C(\text{CH}_3)_2\text{C}_5\text{H}_3\text{N}$) with N-methylmorpholine-N-oxide affords the uranyl(VI) complexes, [Cp*U^{VI}O_{2}(^{\text{MesPDI}_{Me}})] (181) and [Cp*U^{VI}O_{2}(^{\text{Bu-MesPDI}_{Me}})] (182), which are best described as containing uranyl(VI) supported by a singly reduced pyridine(diamine) ligand. Treatment of 181 or 182 with 2 equiv. of Me$_3$SiI results in UVI→UIV reduction and silylation of both oxo ligands, forming [U^{IV}I_{2}(^{\text{OSiMe}_{3}})] (183) and [U^{IV}I_{2}(^{\text{OSiMe}_{3}})(^{\text{Bu-MesPDI}_{Me}})] (184), respectively (Scheme 39).

Scheme 39. UVI→UIV reductive silylation of [Cp*U^{VI}O_{2}(^{\text{MesPDI}_{Me}})] (181) with Me$_3$SiI, affording [U^{IV}I_{2}(^{\text{OSiMe}_{3}})(^{\text{MesPDI}_{Me}})] (183) via intermediate [U$^{\text{V}}$I(^{\text{OSiMe}_{3}})(^{\text{MesPDI}_{Me}})] (185).

Only complex 183 was crystallographically characterized and in the solid-state the UIV center possesses pentagonal bipyramidal geometry with the $trans$-trimethylsiloxy ligands occupying the axial coordination sites. The formation of 183 was thought to progress from 181 via a UV intermediate, which was identified as [U$^{\text{V}}$I(^{\text{OSiMe}_{3}})(^{\text{MesPDI}_{Me}})] (185) by 1H NMR and IR spectroscopy. Intermediate 185 is the product of homolytic cleavage of the U–Cp* bond with concomitant Me$_3$Si–I addition across one of the U=O bonds; its presence during the formation of 179 was verified by electronic absorption spectroscopy of the reaction solution. The formation of 184 is thought to proceed via an analogous intermediate.
Scheme 40. UVI→UIV reductive silylation of [Cp*UO₂(MesPDIMe)] (181), providing [(R₃SiO)₂UIVX₂(OPPh₃)₂] (R = Ph, X = Cl (186); R = Me, X = SPh (187); R = Me, X = Cl (188); R = Me, X = I (189); R = Me, X = OTf (190)).

The scope of the reductive silylation of 181 using Me₃SiI was expanded to other silanes via a reductive functionalization strategy that entailed the addition of a Lewis base to generate the silylium ion, [base-SiR₃][X]. It was envisaged that the more electrophilic silylium ion would facilitate uranyl functionalization, and while previously the addition of Ph₃Si-Cl or Me₃Si-SPh to 181 did not result in a reaction, and the addition of Me₃Si-Cl or Me₃Si-OTf yielded intractable mixtures, the introduction of two equiv. of Ph₃P=O into the reaction mixtures resulted in complete conversion into [(R₃SiO)₂UIVX₂(OPPh₃)₂] (R = Ph, X = Cl (186); R = Me, X = SPh (187); R = Me, X = Cl (188); R = Me, X = I (189); R = Me, X = OTf (190); Scheme 40). The more sterically encumbered iPr₃Si-Cl remained unreactive with 181, which was attributed to the inability of O=PPh₃ to undertake nucleophilic attack at Si. The reducing electrons for the two electron reduction of the UVI center in 181 originate from the redox-active pyridine(diamine) ligand and from homolytic cleavage of the U–Cp* bond, forming [MesPDI²Me]₀ and Cp*₂ as by-products.

Scheme 41. UVI→UIV reductive silylation of [UO₂X₂(OPPh₃)₂] (191, 197, 198) and [UO₂(OTf)₂(2,2'-bipy)₂] (199): by (1) alkylation followed by (2) bis(alkyl) reductive elimination and U–O silylation, forming [{R₃SiO}UIVX₂(OPPh₃)] (186-189, 192-196, 200) and [{Me₃SiO}UIV(OTf)₂(2,2'-bipy)₂] (201).
The reductive functionalization of the simple uranyl(VI) compound \([U^{VI}O_2Cl_2(OPPh_3)_2]\) (191) has also been explored. Salt metathesis using M-R alkylating reagents (M-R = KCH_2Ph, \(^4\)BuLi, MCH_2SiMe_3; M = Li, Na, K), forms the corresponding U^{VI} (dialkyl) complexes which undergo reductive elimination of the alkyl co-ligands upon addition of R_3Si–X halosilanes across the U=O bond. The reductive elimination of alkane provides the two reducing electrons requisite for U^{VI} \rightarrow U^{IV} reduction. Alkylation of 191 with two equiv. of NaCH_2SiMe_3, followed by the addition of R_3Si–Cl provided \([R_3SiO]_2U^{IV}Cl_2(OPPh_3)_2\] (R = Ph (186), Me (188), Et (192) or H (193); Scheme 41) in high yields. The use of this protocol with Me_2PhSi–Cl, MePh_2Si–Cl, Ph_2HSi–Cl and Me_3Si–SPh also provided the desired U^{IV} bis(siloxide) products, \([\text{(Me}_3\text{SiO)}_2\text{U}^{IV}\text{(SPh)}_2\text{(OPPh}_3)_2\text{]}\) (187) and \([\text{(R}_3\text{SiO)}_2\text{U}^{IV}\text{Cl}_2\text{(OPPh}_3)_2\text{]}\) (R_3Si = Me_2PhSi (194), MePh_2Si (195) and Ph_2HSi (196); Scheme 41). The same method was also applied to different uranyl and silyl starting materials, in particular, \([U^{VI}O_2X_2\text{(OPPh}_3)_2\text{]}\) (X = Br (197), I (198)) and \([U^{VI}O_2\text{(OTf)}_2(2,2'\text{-bipy})_2\text{]}\) (199), and Me_3Si–X (X = Br, I, OTf) which successfully generated the corresponding U^{IV} bis(siloxide) products, \([\text{(Me}_3\text{SiO)}\text{U}^{IV}\text{Br}_2\text{(OPPh}_3)_2\text{]}\) (200), \([\text{(Me}_3\text{SiO)}\text{U}^{IV}\text{I}_2\text{(OPPh}_3)_2\text{]}\) (189) and \([\text{(Me}_3\text{SiO)}\text{U}^{IV}\text{(OTf)}_2(2,2'\text{-bipy})_2\text{]}\) (201), respectively (Scheme 41); the halide co-ligands incorporated with the uranyl starting materials were matched with the R_3Si-X halide to avoid halide scrambling.89

Scheme 42. U^{VI} \rightarrow U^{IV} reductive silylation of cationic \([U^{VI}O_2\text{(OTf)}(dpmmo)][\text{OTf}]\) (202) resulting in oxo-group silylation and abstraction, yielding \([U^{IV}\text{(OSiPh}_3\text{(OTf)}_2\text{(dpmmo})_2][\text{OTf}]\) (204).90
Cationic uranyl(VI) complexes have been studied in reductive silylation chemistry as they should be susceptible to reduction at more positive reduction potentials. However, treatment of the cationic uranyl(VI) complex \([\text{U}^{\text{VI}}\text{O}_2(\text{dppmo})_2(\text{OTf})][\text{OTf}]\) (202; dppmo = \(\text{Ph}_2\text{P(O)}\text{CH}_2\text{P(O)}\text{PPh}_2\)) with 2 equiv. of \(\text{Ph}_3\text{SiOTf}\) did not result in a reaction, which is likely due to the decrease in nucleophilicity of the uranyl oxo-ligands. In contrast, the addition of 2 equiv. of \([\text{CoCp}_2]\) and 4 equiv. of \(\text{Ph}_3\text{SiOTf}\) to 202 afforded \([\text{U}^{\text{IV}}(\text{OTf})_4(\text{dppmo})]\) (203), likely through initial \(\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}\) reduction to render the uranyl oxo-groups more nucleophilic and susceptible to silylation. The formation of 203 proceeds through a \(\text{U}^{\text{IV}}\) bis(siloxide) intermediate, detected by \(^1\text{H}\) NMR spectroscopy, and \([\text{U}^{\text{IV}}(\text{OSiPh}_3)(\text{OTf})_2(\text{dppmo})_2][\text{OTf}]\) (204), which was characterized crystallographically. 204 is the product of \(\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{IV}}\) reduction and oxo-group silylation followed by oxo-group abstraction; 2 equiv of \([\text{Cp}_2\text{Co}][\text{OTf}]\) and \(\text{Ph}_3\text{SiOSiPh}_3\) were detected as by-products during the formation of 204 (Scheme 42).

Scheme 43. Synthesis of a dipyrrin-coordinated uranyl(VI) complex, \([\text{U}^{\text{VI}}\text{O}_2\text{Cl}(\text{L}')]\) (205)."
It was recently demonstrated that the mono-anionic, tetradentate dipyrrin ligand, L’ (Scheme 43) acts as a ligand for uranyl(VI), and that treatment with either inner- or outer-sphere reductants leads to different, and reagent-dependent, degrees of reduction of the complex. Treatment of $[\text{U}^{\text{VI}}\text{O}_2\{\text{N(SiMe}_3\}_2\}_2(\text{THF})_2]$ (2-THF) with HL’ followed by [HPy]Cl provided $[\text{U}^{\text{VI}}\text{O}_2\text{Cl}(L’)]$ (205; Scheme 43). Alternatively, 205 may be obtained by treating HL’ with 0.5 equiv. of 2-THF and 0.5 equiv. of $[\text{U}^{\text{VI}}\text{O}_2\text{Cl}_2(\text{THF})_2]$ (4-THF; Scheme 43). Complex 205 reacts with the inner-sphere reductant, [Cp₂TiCl]₂, to yield the uranium(IV) complex $[\text{U}^{\text{IV}}(\text{OTiClCp}_2)_2(\text{Cl})(L’)]$ (206) which is the product of $\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{IV}}$ reduction and titanation of each of the uranyl oxo groups (Scheme 44a). Attempts to react 205 with 0.5 equiv. of [Cp₂TiCl]₂ to cleanly isolate the U⁴ analogous of 206, $[\text{U}^{\text{IV}}\text{O}(\text{OTiClCp}_2)(\text{Cl})(L’)]$ (207), were unsuccessful, as 207 slowly disproportionates into 205 and 206 over time. 205 reacts with a sub-stoichiometric amount (0.95 equiv.) of the outer-sphere reductant, [CoCp₂], to provide [CoCp₂]$[\text{U}^{\text{VI}}\text{O}_2\text{Cl}(L’)]$ (208) which, based on EPR and NMR spectroscopy and X-ray crystallography, is best described as a ligand-centered radical of the uranyl(VI) ion (Scheme 44b). Despite CV data suggesting that [CoCp₂] is reducing enough to access the reduced uranyl complex, [CoCp₂]$_2[\text{U}^{\text{VI}}\text{O}_2(\text{Cl})(L’)]$, only the ligand-centered radical was observed.²⁵

Scheme 44. (a) $\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{IV}}$ reduction observed upon treating $[\text{U}^{\text{VI}}\text{O}_2\text{Cl}(L’)]$ (205) with the inner-sphere reductant, [Cp₂TiCl]₂, to provide $[\text{U}^{\text{IV}}(\text{OTiClCp}_2)_2(\text{Cl})(L’)]$ (206), and (b) ligand-based reduction observed when treating 205 with the outer-sphere reductant, [CoCp₂], to provide [CoCp₂]$[\text{U}^{\text{VI}}\text{O}_2\text{Cl}(L’)]$ (208).²⁵
It is interesting to note that while [Cp₂TiCl]₂ and [CoCp₂] possess similar reduction potentials, UVI→UIV reduction is seen when 205 reacts with the former (inner-sphere) reductant whereas ligand-based reduction is observed when 205 reacts with the latter (outer-sphere) reductant. It was determined by DFT calculations that in the case of the inner-sphere reductant, while the first reduction is ligand-based, coordination of the Lewis acidic TiIV ion to one of the uranyl oxo groups promotes electron transfer from the ligand to the UVI center, resulting in UVI→UV reduction. The subsequent electron transfer and oxo group titanation step then occurs at the U center, resulting in UV→UIV reduction.55

When two uranyl(VI) ions are installed into the same ligand, facile reductive functionalization to uranium(IV) complexes is achieved using mild reducing agents such as boranes or silanes. [{UVI₂(py)₂(Lₐ)] (209), which is prepared from H₄Lₐ and 2.5 equiv. of 2-THF (H₄Lₐ = a Pacman-shaped macrocyclic Schiff-base ligand with ethyl substituents on the meso-carbon atoms and an anthracenyl hinge linking the N₄-donor pockets, Scheme 45), reacts with 2 equiv. of B₂pin₂ or B₂cat₂ at 80 °C in pyridine to afford [(py)(pinBO)UIVOUIV(OBpin)(py)(Lₐ)] (210) and [(py){cat(py)BO}UIVOUIV(OBcat)(py)(Lₐ)] (211), respectively (Scheme 45a). While complex 210 is isolated in 47 % yield, 211 is only generated in situ or in small quantities (ca. 10 mg) and of reduced purity (ca. 90 %) because it reacts with a third equiv. of B₂cat₂ to ultimately yield [(py)UVOUIV(µ-O₂C₆H₄)(Lₐ)] (212). Complex 209 also reacts with 10 equiv. of HBpin or HBcat at 125 °C in pyridine to afford 210 and 211/212, respectively. Alternatively, 209 reacts with excess Ph₂SiH₂ (15 equiv.) in the presence of 0.25 equiv. of MX salts (M = K, X = N(SiMe₃)₂ or O'Bu; M = Li, X = N(SiMe₃)₂) at 125 °C in pyridine to afford the reductively silylated uranium(IV) complex [(py)(HPh₂SiO)UVOUIV(OSiPh₂H)(py)(Lₐ)] (213; Scheme 45b). Complexes 210, 211 and 213 are the products of UVI→UV reductive borylation or silylation, oxo-atom abstraction and fusion of the former uranyl(VI) ions. Initial functionalization is thought to proceed through a UV/UV intermediate upon B–B or Si–H bond homolysis and borylation/silylation of the exo-oxo ligands. The ultimate UV→UIV reduction is anticipated to proceed through a second B–B or Si–H bond homolysis and
attack at one of the *endo*-oxo-groups, resulting in loss of one of the *endo*-oxo-ligands and formation of (R₂B)₂O/(HPh₂Si)₂O.⁹¹

Scheme 45. (a) \(U^{VI} \rightarrow U^{IV} \) reductive borylation of a bis(uranyl(VI)) complex \([\{U^{VI}O_2(py)\}_2(L^A)]\) (209) through reaction with \(B_2\text{pin}_2 \) and \(B_2\text{cat}_2 \), yielding \([\text{py}(\text{pinBO})U^{IV}OU^{IV}(\text{OBpin})(\text{py})(L^A)]\) (210) and \([\text{py}\{\text{cat}(\text{py}BO)U^{IV}OU^{IV}(\text{OBcat})(\text{py})(L^A)\}]\) (211), and (b) \(U^{VI} \rightarrow U^{IV} \) reductive silylation of 209 through reaction with \(\text{Ph}_2\text{SiH}_2 \), providing \([\text{py}(\text{HPh}_2\text{SiO})U^{IV}OU^{IV}(\text{OSiPh}_2\text{H})(\text{py})(L^A)]\) (213). The anthracenyl-Pacman ligand, \(H_4L^A \), is depicted at the top of the Scheme.⁹¹
Table 5. Structural and spectroscopic data for reductively functionalized uranium(IV) dioxo complexes reported since 2010 and discussed in Section 5. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy.
The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for the reductively functionalized uranium(IV) dioxo complexes reported since 2010 and discussed in Section 5 (vide supra) are provided in Table 5, and their trends are discussed in more detail in Section 7 (vide infra).

6. UVI → UIV REDUCTIVE FUNCTIONALIZATION VIA CHARACTERIZED U(V) INTERMEDIATES

As discussed in Section 3, treating a uranyl(VI)-Aracnac complex (Aracnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-tBu2C6H3) with either 2 equiv. of Ph3SiOTf or excess Me3Si...
results in $\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}$ reduction and silylation of the oxo groups. Attempts have been made to react the same uranyl(VI) starting complex, $[\text{U}^{\text{VI}}\text{O}_2(\text{Aracnac})_2]$ (54), with Ph$_3$SiH, but no reaction occurs until B(C$_6$F$_5$)$_3$ is added to the reaction mixture, in which case $[\text{U}^{\text{V}}\{\text{OB(C}_6\text{F}_5)_3\}(\text{OSiPh}_3)(\text{Aracnac})_2]$ (214; Scheme 46a) was formed. The addition of borane is thought to result in Ph$_3$SiH\rightarrowB(C$_6$F$_5$)$_3$ adduct formation, thus activating the silane and rendering it susceptible to nucleophilic attack by a uranyl oxo group. This hypothesis was verified by repeating the same reaction but with iPr$_3$SiH, in which the sterically bulky isopropyl substituents are known to disfavor B(C$_6$F$_5$)$_3$ coordination and activation, resulting in no reaction. Upon Ph$_3$Si$^+$ and B(C$_6$F$_5$)$_3$ coordination to the uranyl oxo ligands, $\text{U}^{\text{VI}}\rightarrow\text{U}^{\text{V}}$ reduction is facilitated by H$^-$, resulting in the formation of H$_2$. The CV indicated that an irreversible reduction feature was located at $E_{1/2} = -0.72$ (vs. Fc/Fc$^+$), which is shifted 0.49 V to a more positive reduction potential relative to [Cp*$_2$Co]$[\text{U}^{\text{IV}}\{\text{OB(C}_6\text{F}_5)_3\}_2(\text{Aracnac})_2]$ ($E_{1/2} = -1.21$ V vs. Fc/Fc$^+$),92 and is attributed to coordination of the more Lewis acidic Ph$_3$Si$^+$ cation to one of the uranyl(V) oxo groups. Treating 214 with CoCp$_2$ resulted in the formation of [Cp$_2$Co]$[\text{U}^{\text{IV}}\{\text{OB(C}_6\text{F}_5)_3\}(\text{OSiPh}_3)(\text{Aracnac})_2]$ (215; Scheme 46a). The U–O bond lengths in 215 (U–O$_B$ = 2.056(8) Å, U–O$_{Si}$ = 2.173(8) Å) are elongated relative to those in 214 (U–O$_B$ = 1.941(8) Å, U–O$_{Si}$ = 2.034(9) Å), as expected for [U$^{\text{IV}}$O$_2$] versus [U$^{\text{V}}$O$_2$]$^+$, and the O–U–O bond angles remain linear in both (175.3(3)$^\circ$ and 174.6(3)$^\circ$ in 215 and 214, respectively).

Attempts were made to oxidize 215 back to 54 using either I$_2$ or AgOTf, but were unsuccessful.93

Scheme 46. (a) Monosilylation of an oxo group in $[\text{U}^{\text{VI}}\text{O}_2(\text{Aracnac})_2]$ (54) by treatment with Ph$_3$SiH/B(C$_6$F$_5$)$_3$, providing $[\text{U}^{\text{V}}\{\text{OB(C}_6\text{F}_5)_3\}(\text{OSiPh}_3)(\text{Aracnac})_2]$ (214), and subsequent reduction to afford [CoCp$_2$]$[\text{U}^{\text{IV}}\{\text{OB(C}_6\text{F}_5)_3\}(\text{OSiPh}_3)(\text{Aracnac})_2]$ (215). (b) Disilylation of 54 using 2 equiv. of Et$_3$SiH and 1 equiv. of B(C$_6$F$_5$)$_3$, providing $[\text{U}^{\text{V}}(\text{OSiEt}_3)(\text{Aracnac})_2][\text{HB(C}_6\text{F}_5)_3]$ (216) and $[\text{U}^{\text{V}}\{\text{OB(C}_6\text{F}_5)_3\}(\text{OSiEt}_3)(\text{Aracnac})_2]$ (217; minor component); 216 may be converted into 217 by
heating in toluene at 85 °C for 24 hours. 217 reacts with CoCp2 to provide \([\text{U}^{\text{IV}}(\text{OSiEt}_3)_2(\text{Aracnac})_2]\) (219).\(^{93,94}\)

Alternatively, treating 54 with 2 equiv. of Et$_3$SiH and 1 equiv. of B(C$_6$F$_5$)$_3$ results in double silylation of the uranyl oxo groups, providing \([\text{U}^{\text{V}}(\text{OSiEt}_3)_2(\text{Aracnac})_2][\text{HB(C}_6\text{F}_5)_3]\) (216) following U$^{\text{VI}}$→U$^{\text{V}}$ reduction. During this reaction, \([\text{U}^{\text{V}}\{\text{OB(C}_6\text{F}_5)_3\}_{\text{2}}(\text{OSiEt}_3)(\text{Aracnac})_2]\) (217) is formed as a minor product (216:217 = 4:1), but can be isolated on a preparative scale either by heating 54 with equimolar quantities of Et$_3$SiH and B(C$_6$F$_5$)$_3$, or by heating 216 to 85 °C for 24 hours in toluene (Scheme 46b). However, several unidentified decomposition products are observed when using the latter method. Complex 54 also reacts with 1 equiv. of Et$_3$SiH/B(C$_6$F$_5$)$_3$ at room temperature to provide 216 and unreacted 54. The formation of complexes 216 and 217 indicates that a [\text{U}^{\text{V}}\text{O}_2]^+ -silylated intermediate, [\text{U}^{\text{V}}\text{O(OSiR}_3\text{)}(\text{Aracnac})_2] (R = Et, Ph), must be formed during the reaction. Furthermore, the silyl cation in Et$_3$SiH→B(C$_6$F$_5$)$_3$ must be more prone to nucleophilic attack by the silylated-uranyl(V) oxo group, and therefore reacts faster than uranyl→borane adduct formation compared to Ph$_3$SiH→B(C$_6$F$_5$)$_3$, given that a doubly silylated product is isolated in the reaction.
involving the former reactive species while only a singly silylated product is isolated in the latter case. A quasi-reversible redox couple was observed at \(-0.37\) V (vs. Fc/Fc\(^+\)) in the CV of 216, which is shifted 0.35 V and 0.84 V to a more positive reduction potential relative to 214 and \([\text{Cp}^*\text{Co}]^{\text{V}}\{\text{OB(C}_6\text{F}_5)_3\}_2(\text{Ar}^{\text{acnac}})_2\] (218), respectively, consistent with the positive charge on 216 versus the neutral and anionic charges on 214 and 218, respectively. Complex 216 reacts with CoCp\(_2\) to provide \([\text{U}^{\text{IV}}\{\text{OSiEt}_3\}(\text{Ar}^{\text{acnac}})_2]\) (219), which possesses U–O bond lengths (2.129(2) Å) that are elongated relative to 216 (2.011(4), 2.013(4) Å) and 217 (2.017(6), 1.957(6) Å), and representative of a \([\text{U}^{\text{IV}}\{\text{OSiR}_3\}_2]^{2+}\) complex (Scheme 46b). 92,94

Scheme 47. Treatment of \([\text{U}^{\text{VI}}\text{O}_2(\text{Bu}^{\text{acnac}})_2]\) (220) with excess \(\text{Me}_3\text{SiI/PPh}_3\) provides \([\text{Ph}_3\text{P}]^{\text{IV}}\{\text{OSiMe}_3\}_2\text{I}_4\] (221). The addition of 2 equiv. of either 4,4'-bipyridine (bipy) or 1,10-phenanthroline (phen) to a toluene solution of 221 affords \([\text{U}^{\text{IV}}\{\text{OSiMe}_3\}_2\text{I}_2(\text{bipy})_2]\) (222) or \([\text{U}^{\text{IV}}\{\text{OSiMe}_3\}_2\text{I}_2(\text{phen})_2]\) (223), respectively, and the addition of excess THF yields \([\text{U}^{\text{IV}}\{\text{OSiMe}_3\}_2\text{I}(\text{THF})_4][\text{I}_3]\) (224). 57

The reductive silylation chemistry of uranyl(VI) of a \(\beta\)-ketoiminate ligand (*i.e.* acnac ligand) that possesses an \(N\)-bound tert-butyl substituent instead of an aryl substituent, \([\text{U}^{\text{VI}}\text{O}_2(\text{Bu}^{\text{acnac}})_2]\)
(220, tBuacnac = tBuNC(Ph)CHC(Ph)O), has also been explored. In this case, treating 220 with excess Me3SiI (10 equiv.) in the presence of PPh3 affords [Ph3PI][U(V)(OSiMe3)2I4] (221), in which both oxo groups of uranyl have been silylated, the U(VI) center has undergone a one-electron reduction, and both tBuacnac ligands have been substituted for iodo ligands and converted into their silylated analogue, tBuacnacSiMe3 (Scheme 47). The loss of both equivalents of tBuacnac ligand when treating 220 with excess Me3SiI compared to only one equivalent when Aracnac is used (see Section 3, vide supra) has been attributed to the extra steric bulk imparted by the tert-butyl substituents, making ligand abstraction more facile. The formation of 221 is thought to proceed through the U(V) intermediate, [U(V)(OSiMe3)2I3], which is formed via U(VI)→U(V) reduction by I− following Me3Si+ coordination to the uranyl oxo groups. The resulting I2 reaction by-product (0.5 equiv.) then reacts with Ph3P to provide [Ph3PI]I, which is trapped by the proposed U(V) intermediate. Due to fact that only 0.5 equiv. of I2 is produced during this reaction, the maximum yield of 221 is 50 %. When 2 equiv. of either 4,4′-bipyridine (bipy) or 1,10-phenanthroline (phen) are added to a toluene solution of 221, [U(IV)(OSiMe3)2I2(bipy)2] (222) or [U(IV)(OSiMe3)2I2(phen)2] (223) are obtained, respectively (Scheme 47). Alternatively, the addition of excess THF to a toluene solution of 221 provides [U(IV)(OSiMe3)2I(THF)4][I3] (224; Scheme 47). Compounds 222-224 are the product of U(V)→U(IV) reduction, which is thought to occur by I− dissociation and oxidation to I2. Complex 221 possesses U–O bond lengths of 1.990(6) and 1.976(8) Å and complexes 222 and 224 possess U–O bond lengths that range from 2.065(6)-2.084(4) Å, which are representative of U(V) and U(IV) dioxo complexes, respectively. Complexes 221-224 are thermally unstable in solution, decomposing slowly to provide (Me3Si)2O as a decomposition product.57

As was highlighted in Section 3, the macrocyclic Pacman ligand, H4LMe, or the mono(uranyl) Pacman complex 11-py react with 2.5 equiv. or 1.5 equiv. of [U(V)O2{N(SiMe3)2}2(py)2] (2-py), respectively, to afford the doubly oxo-silylated bis(uranyl(V)) complex, [{U(V)O(OSiMe3)}2(LMe3)] (70). Complex 70 may be further reduced with 2 equiv. of K metal to afford K2[{U(IV)O(OSiMe3)}2(LMe3)] (225; Scheme 48), which was characterized by 1H NMR, IR and UV/VIS
spectroscopies, and elemental analysis. Complex 70 may be regenerated from 225 and I₂, producing KI as a reaction by-product. Alternatively, 225 undergoes a double desilylation reaction with pyridine-N-oxide to afford \([K(py)_3]_2[K(py)]_2[(U^{V}O_2)_2(L^{Me})]_2\) (19-py) in pyridine or \(\{K_2[(U^{V}O_2)_2(L^{Me})]\}_n\) (19-THF) in THF. Treating 19 with 2 equiv. of Cl-SiMe₃ results in regeneration of 70 (Scheme 48). Complexes 19-py and 19-THF possess significantly more contracted U–Oₑₓₒ bond lengths (1.851(5)-1.871(6) Å) relative to the U–Oₑⁿᵈₒ bond lengths (2.077(5)-2.101(5) Å), indicating that they retain greater multiple bond character and display appreciable air-sensitivity compared with the silyl-protected 70.³⁸

Scheme 48. Dually oxo-silylated \([\{U^{V}O(OSiMe_3)\}_2(L^{Me})]\) (70), which may be obtained by treating H₄L⁴Me with 2.5 equiv. of \([U^{VI}O_2\{N(SiMe_3)_2\}_2(py)_2]\) (2-py), reacts with 2 equiv. of potassium to provide K₂\([\{U^{IV}O(OSiMe_3)\}_2(L^{Me})]\) (225). 225 reacts with either C₅H₅NO or 0.5 equiv. of O₂ to yield \([K(py)_3]_2[K(py)]_2[(U^{V}O_2)_2(L^{Me})]_2\) (19-py; see Section 2), and 70 may be regenerated by treating 225 or 19 with I₂ or 2 equiv. of Cl-SiMe₃, respectively.³⁸
In addition to U^{VI}\rightarrow U^{IV} reduction upon treating [U^{VI}O_2Cl(L')] (205) with the inner-sphere reductant, [Cp_2TiCl]_2, as was highlighted in Section 5 (vide supra) complex 205 has been exploited to demonstrate the effects of axial and equatorial ligand manipulation on the reductive functionalization chemistry of the uranyl(VI) ion. Complex 205 reacts with 1 equiv. of KNHAr (Ar = 2,6-\text{Pr}_2C_6H_3) to yield the U^V/U^V dimer [U^{V}O_2(L')]_2 (226; Scheme 49). The formation of 226 presumably proceeds through the unisolated anilid complex, [U^{VI}O_2(NHAr)(L')], which then undergoes U–N bond homolysis. Complex 226 reacts with either 1 or 2 equiv. of B(C_6F_5)_3 to afford singly or doubly oxo-functionalized [U^V{OB(C_6F_5)_3}(L')] (227) and [U^V{OB(C_6F_5)_3}_2(L')] (228), respectively (Scheme 49). Complex 228 is also formed from the reaction of 205 with 2 equiv. of B(C_6F_5)_3, resulting in loss of Cl', but this reaction does not reach completion (even with heating in the presence of 8 equiv. of B(C_6F_5)_3) unless elemental mercury is added, which enables the removal of the Cl' by-product in the form of solid Hg_2Cl_2 via reduction to Cl^- (Scheme 49). Complex 205 also reacts with Na[B\{C_6H_3-3,5-(CF_3)_2\}_4] to yield the cationic uranyl(VI) complex, [U^{VI}O_2(L')][B\{C_6H_3-3,5-(CF_3)_2\}_4] (229), and with AgOTf to form [U^{VI}O_2(OTf)(L')] (230).^{58}

Scheme 49. U^{VI}\rightarrow U^V reduction of [U^{VI}O_2Cl(L')] (205) using either KNHAr (Ar = 2,6-\text{Pr}_2C_6H_3) or 2B(C_6F_5)_3/Hg to provide [U^{V}O_2(L')]_2 (226) and [U^V{OB(C_6F_5)_3}_2(L')] (228), respectively. 226 also reacts with 1 equiv. of B(C_6F_5)_3 to afford [U^V{OB(C_6F_5)_3}(L')] (227).^{58}
In this system, the sequential addition of borane to coordinate to the uranyl(V) ion shifts the $U^{V} \rightarrow U^{IV}$ reduction potential step-wise from -1.14 V vs. Fe/Fe$^+$ for 226 to -0.78 V for 227, then -0.49 V for 228, enabling the use of very mild reducing agents to achieve $U^{V} \rightarrow U^{IV}$ reduction. As such, 228 is reduced by [FeCp*$_2$] ($E_{\text{red}} = -0.56$ V vs. Fe/Fe$^+$) to yield the anionic uranium(IV) complex [FeCp*$_2$][UIV(OB(C$_6$F$_5$)$_3$)$_2$(L')] (231), and also by H$_2$ ($E_{\text{red}} = -0.54$ V vs. Fe/Fe$^+$) to provide [UIV(OB(C$_6$F$_5$)$_3$) {OB(C$_6$F$_5$)$_2$}(L')] (232). In this latter case, one of the B–C bonds of one of the oxo-coordinated B(C$_6$F$_5$)$_3$ groups is cleaved, producing C$_6$F$_5$H as a by-product and converting the oxo-coordinated B-ligand from a neutral borane to an anionic boroxy ligand (Scheme 50); at a bond angle of 162.8(1)$^\circ$, the O–U–O group is now significantly more bent than other bis(silyloxide) complexes derived from uranyl reduction, indicating the loss of 'yl' character.58

Scheme 50. $U^{V} \rightarrow U^{IV}$ enabled by uranyl(V) oxo group \rightarrow borane coordination. [UIV(OB(C$_6$F$_5$)$_3$)$_2$(L')] (228) reacts with [FeCp*$_2$] and H$_2$ to afford [FeCp*$_2$][UIV(OB(C$_6$F$_5$)$_3$)$_2$(L')] (231) and [UIV(OB(C$_6$F$_5$)$_3$) {OB(C$_6$F$_5$)$_2$}(L')] (232), respectively.58

The reductive functionalization of uranyl(VI) may also be achieved through deployment of a suitable donor solvent in the absence of intricately designed and strictly equatorially coordinating ligands. As such, a new class of highly symmetrical, linear oxo-bridged mixed actinide/lanthanide complexes (Scheme 51) are accessible from uranyl reduction by low oxidation-state lanthanide and actinide halides.95

Scheme 51. Reductive functionalization of [UVIO$_2$(N(SiMe$_3$)$_2$)$_2$(THF)$_2$] (2-THF) or [UVIO$_2$Cl$_2$(THF)$_2$] (4-THF) with LnII (Ln = Sm, Dy) or UIII salts in donor solvents (pyridine or

acetonitrile. (a) 1.25[LnIII2(THF)2] (Ln = Sm, Dy), (b) 2[SmII2(THF)2], (c) 2[UII3(dioxane)1.5, (d) 3DyII2.95

The reactions between [UVI2O2Cl2(THF)2] (4-THF) and 1.25 equiv. of either [SmII2(THF)2] or DyII2 provide the mixed Ln/An complexes [{UVO2(py)2}(LnIII4)] (Ln = Sm (233), Dy (234)), which display linear, oxo-bridged units made up of a [LnIII4]– anion sandwiched between two [UVO2]+ cations (Scheme 51a). Alternatively, 4-THF reacts with 2 equiv. of [SmII2(THF)2] in acetonitrile to provide the one-dimensional coordination polymer [{(UVO2)3}SmII3(NCMe)6]n (235; Scheme 51b), and with 2 equiv. of [UIII3(diox)1.5] to yield the trimetallic UIV/UV/UV complex [{(UV)2I4}{UVI4Cl(py)4}2] (236; Scheme 51c). Complex 235 is composed of alternating anionic [UVO2]− and cationic SmIII units and 236 comprises a central [UVO2]2− dianion bridged by two [UV]+ cations. While treating 4-THF with excess DyII2 only yielded 234, treatment of [UVI2O2{N(SiMe3)2}2(THF)2] (2-THF) with 3 equiv. of DyII2 provided access to [{(UVI2O)3}DyII3(py)3]2 (237), which similarly to 236, possesses an anionic [UVO2]2− unit sandwiched between two DyIII cations and is the product of [UVO2]2+→[UVO2] reduction (Scheme 51d).95
Table 6. Structural and spectroscopic data for reductively functionalized uranyl(V) and uranium(IV) dioxo complexes reported since 2010 and discussed in Section 6. With respect to the tabulated IR data, sym. refers to the symmetric OUO stretching frequency determined by Raman spectroscopy and asym. refers to the asymmetric OUO stretching frequency determined by IR spectroscopy.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[U(µ-OB(C₆F₅)₃)(OSiPh)(µ-6(acnac)₂)] (214)</td>
<td>1.941(9) (U–O₁), 2.034(9) (U–O₂)</td>
<td>1.666(9) (X = Si), 1.52(2) (X = B)</td>
<td>174.6(3)</td>
<td>173.2(5) (X = Si), 170.2(7) (X = B)</td>
<td>Unassigned</td>
<td>93</td>
</tr>
<tr>
<td>[U(OSiEt)(µ-6(acnac)₂)][HB(C₆F₅)₃] (216)</td>
<td>2.011(4), 2.013(4)</td>
<td>1.678(4), 1.684(4)</td>
<td>180.0</td>
<td>161.5(3), 159.4(3)</td>
<td>Unassigned</td>
<td>94</td>
</tr>
<tr>
<td>[U(µ-OB(C₆F₅)₃)(OSiEt)(µ-6(acnac)₂)] (217)</td>
<td>2.017(6) (U–O₁), 1.957(6) (U–O₂)</td>
<td>1.664(7) (X = Si), 1.53(1) (X = B)</td>
<td>175.0(3)</td>
<td>168.0(4) (X = Si), 166.6(6) (X = B)</td>
<td>Unassigned</td>
<td>94</td>
</tr>
<tr>
<td>[Ph₃P][U(OSiMe₃)₂]₂ (221)</td>
<td>1.976(8), 1.990(6)</td>
<td>1.688(8), 1.674(7)</td>
<td>180.0</td>
<td>176.9(5), 177.8(4)</td>
<td>783 (asym.)</td>
<td>57</td>
</tr>
<tr>
<td>[UO₂(L')₃] (226)</td>
<td>1.928(2), 1.829(3)</td>
<td>3.535(2)</td>
<td>174.5(1)</td>
<td>109.97(9)</td>
<td>783 (asym.)</td>
<td>58</td>
</tr>
<tr>
<td>[UO₂(C₆F₅)₃(L')] (227)</td>
<td>1.914(7), 1.785(7)</td>
<td>1.53(1)</td>
<td>178.7(3)</td>
<td>167.4(6)</td>
<td>837 (asym.)</td>
<td>58</td>
</tr>
<tr>
<td>[U(µ-OB(C₆F₅)₃)(L')₃] (228)</td>
<td>1.922(3), 1.917(3)</td>
<td>1.578(5), 1.554(5)</td>
<td>176.4(1)</td>
<td>174.6(2), 172.9(2)</td>
<td>Unassigned</td>
<td>58</td>
</tr>
<tr>
<td>[UO₂(py)₃] (233)</td>
<td>1.802(6), 1.915(6)</td>
<td>2.331(6)</td>
<td>177.8(3)</td>
<td>176.1(3)</td>
<td>818 (asym.)</td>
<td>95</td>
</tr>
<tr>
<td>[UO₂(py)₃] (234)</td>
<td>1.808(5), 1.919(5)</td>
<td>2.270(5)</td>
<td>177.6(2)</td>
<td>176.9(3)</td>
<td>825 (asym.)</td>
<td>95</td>
</tr>
<tr>
<td>[(UO₂L₄)₃{Sm(NCMe)₆}] (235)</td>
<td>1.868(5), 1.883(4)</td>
<td>2.351(5), 2.318(4)</td>
<td>179.3(2)</td>
<td>179.2(3), 169.5(3)</td>
<td>722 (asym.)</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[CoCp₃][U(µ-OB(C₆F₅)₃)(OSiPh)(µ-6(acnac)₂)] (215)</td>
<td>2.173(8) (U–O₁), 2.056(8) (U–O₂)</td>
<td>1.610(9) (X = Si), 1.44(2) (X = B)</td>
<td>175.3(3)</td>
<td>170.3(6) (X = Si), 176.9(9) (X = B)</td>
<td>Unassigned</td>
<td>93</td>
</tr>
<tr>
<td>[U(OSiEt)(µ-6(acnac)₂)] (219)</td>
<td>2.129(2)</td>
<td>1.628(2)</td>
<td>180.0</td>
<td>159.0(2)</td>
<td>Unassigned</td>
<td>94</td>
</tr>
<tr>
<td>[U(OSiMe₃)₂(L')(bipy)] (222)</td>
<td>2.084(4)</td>
<td>1.639(4)</td>
<td>115.5(2)</td>
<td>165.4(3)</td>
<td>Unassigned</td>
<td>94</td>
</tr>
<tr>
<td>[U(OSiPh)(µ-1,1,4-thf)₃] (224)</td>
<td>2.065(6), 2.080(6)</td>
<td>1.670(6), 1.659(6)</td>
<td>173.8(3)</td>
<td>170.0(4), 172.8(4)</td>
<td>Unassigned</td>
<td>97</td>
</tr>
<tr>
<td>[Cp₄*Fe][U(µ-OB(C₆F₅)₃)(L')₃] (231)</td>
<td>2.030(5), 2.022(5)</td>
<td>1.51(1), 1.475(9)</td>
<td>170.6(2)</td>
<td>163.1(5), 170.0(5)</td>
<td>631 (asym.)</td>
<td>58</td>
</tr>
<tr>
<td>[U(µ-OB(C₆F₅)₃)(L')₃] (232)</td>
<td>2.196(4), 1.990(3)</td>
<td>1.323(6), 1.490(6)</td>
<td>162.8(1)</td>
<td>152.0(3), 166.8(3)</td>
<td>Unassigned</td>
<td>58</td>
</tr>
<tr>
<td>[(UO₂L₄)₃{UCl(py)₃}] (236)</td>
<td>2.166(5)</td>
<td>2.042(5)</td>
<td>180.0</td>
<td>173.8(3)</td>
<td>Unassigned</td>
<td>95</td>
</tr>
<tr>
<td>[(UO₂L₄)₃{DyL(py)₃}] (237)</td>
<td>2.058(3), 2.068(3)</td>
<td>2.126(3), 2.119(3)</td>
<td>177.7(1)</td>
<td>170.5(2), 173.6(2)</td>
<td>Unassigned</td>
<td>95</td>
</tr>
</tbody>
</table>

Table Footnotes: The compounds are numbered within Table 6 according to how they appear in the text, and any lattice solvent molecules are not included in the chemical formulae.

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for the reductively functionalized uranyl(V) and uranium(IV) dioxo complexes.
reported since 2010 and discussed in Section 6 (*vide supra*) are provided in Table 6, and their trends are discussed in more detail in Section 7 (*vide infra*).

7. STRUCTURAL AND SPECTROSCOPIC CHARACTERISTICS OF $[\text{U}^{\text{VI}}\text{O}_2]^2+$, $[\text{U}^{\text{V}}\text{O}_2]^+$ AND $[\text{U}^{\text{IV}}\text{O}_2]$ COMPLEXES

The structural data (U–O and O–X bond lengths, O–U–O and U–O–X bond angles; X = oxo-functionalizing unit) determined by single crystal X-ray diffraction, and characteristic spectroscopic data (OUO vibrational stretching frequency) determined by FTIR or Raman spectroscopies for uranyl(VI) and reductively functionalized uranyl(V) and U(IV) dioxo complexes reported since 2010 are provided in Tables 1-6. The U-O bond lengths in Tables 1-6 are also represented pictorially in Chart 1.
While for the most part there is a distinct difference in U–O bond lengths depending on the oxidation state of the uranium center, there is some overlap amongst the bond lengths, particularly with respect to uranyl(V) compounds. We have found that uranyl(V) compounds that possess particularly elongated U–OR bonds (R = functionalizing unit of the former oxo ligand) also possess particularly short U=O bonds to the other oxo ligand, resulting in overlap in the ranges of U–O bond lengths of U(IV) dioxo and uranyl(VI) compounds, respectively. The mean U–O bond length for each uranium oxidation state is plotted below in Chart 2. The mean U–O bond lengths for unfunctionalized and functionalized uranyl(VI) complexes, uranyl(V) and U(IV) dioxo complexes are 1.777, 1.800, 1.922 and 2.108 Å, respectively. However, we recognize that the mean values for the different U oxidation states is only a crude measure given that the compounds bear significantly different equatorially coordinating ligands and oxo ligand functionalizing units.

The U–O
\textsubscript{yl} bond lengths and asymmetric OUO stretching frequency (when observable) are important aids in assignment of the formal oxidation state of the uranium center. The U–O
\textsubscript{yl} bond lengths of uranyl(VI) complexes reported since 2010 range from 1.746(6)-1.82(1) Å for unfunctionalized uranyl(VI) complexes and 1.759(5)-1.885(4) Å for functionalized uranyl(VI) complexes. The U–O
\textsubscript{yl} bond lengths of uranyl(V) and U(IV) dioxo complexes range from 1.77(1)-2.122(7) Å and 1.990(3)-2.219(2) Å, respectively. When one of the oxo ligands is functionalized, uranyl(V) complexes will tend to contain one short and one long U–O
\textsubscript{yl} bond, resulting in some overlap of the bond length range with the range observed for U–O
\textsubscript{yl} bond lengths in uranyl(VI) compounds. Furthermore, the asymmetric OUO stretching frequencies for uranyl(VI) complexes range from 860-964 cm-1 in the solid-state with stretching frequencies being reported as high as 973 cm-1 in solution, whereas those for uranyl(V) and U(IV) dioxo complexes range from 704-907 cm-1 (with one exception being [{UVO\textsubscript{2}Eu(py)\textsubscript{2}(L\textsubscript{Me}\textsubscript{2})\textsubscript{2}}] (\textbf{106}), located at 564 cm-1; see section 3) and 531-631 cm-1, respectively. The latter range derives from only four examples in the literature, and tentative assignments are provided for one of those complexes. The O–U–O bond angle remains nearly linear for uranyl(VI) and reductively functionalized uranyl(V) and U(IV) dioxo complexes.
ranging from 180-161.7(5)°, 180-169.3(1)° and 180-155.5(5)° for the +6, +5 and +4 oxidation states, respectively; three outliers exist for the U(IV) dioxo complexes, which are
\[[(\text{py})(\text{pinBO})\text{U}^{\text{IV}}\text{O}\text{U}^{\text{IV}}(\text{OBpin})(\text{py})(L^A)] \] (210),
\[[(\text{py})\{\text{cat(}\text{py})\text{BO}\}\text{U}^{\text{IV}}\text{O}\text{U}^{\text{IV}}(\text{OBcat})(\text{py})(L^A)] \] (211)
and
\[[\text{U}^{\text{IV}}(\text{OSiMe}_3)_2\text{I}_2(\text{bipy})_2] \] (222), which possess O–U–O angles of 96.51(7), 99.2(1) and 115.5(2)°, respectively (see Sections 5 and 6 for discussion). In addition, the O–X bond lengths and U–O–X bond angles are dependent on the oxo-functionalizing unit, rendering these two structural parameters less useful for uranium oxidation state determination.

While Raman spectroscopy is an excellent technique to measure the symmetric OUO stretching frequency, many of the more complicated ligands now being used in molecular uranyl(V) and U(IV) dioxo complexes fluoresce or burn in the laser beam, so few data are available for isolated uranyl(V) complexes. Furthermore, data collection with air and moisture sensitive compounds while avoiding sample decomposition is difficult to achieve with these compounds. However, an outline for successful Raman data collection with respect to excitation wavelength and fluorescence/decomposition while maximizing signal intensity for the identification and relative abundance evaluation of uranyl(VI) species in solution was recently published.\(^{96}\) This method takes into account approximate vibrational band locations and band widths using second derivative spectral analysis and could perhaps be extended to uranyl(V) and U(IV) dioxo complexes.

Authors tend to report the observed stretching frequencies obtained by IR and Raman spectroscopy for uranyl compounds rather than the associated calculated force constants within the OUO unit. We encourage the reporting of calculated force constants since this can provide additional information regarding the bonding within the uranyl ion.\(^{42,97,98}\)

8. \([\text{U}^{\text{VI}}\text{O}_2]^{2+}\) PHOTOCHEMICAL REACTIVITY

Similarly to thermal pathways, photochemical reactivity studies of the uranyl(VI) ion invoke uranyl(V) intermediates, and when applied to photochemical transformations, including C–H bond activation, the resulting \([\text{O}=\text{U}^{\text{V}}\text{-OH}]^{2+}\) motif is H-functionalized. We therefore also discuss recent advances in the photochemistry of the uranyl(VI) ion.
In a transformation key to medicinal and agrochemical industries, the first photochemical, uranyl-mediated fluorination of sp3 C–H bonds was recently reported.99 Combining uranyl nitrate, [UVIO$_2$(NO$_3$)$_2$(OH$_2$)$_2$]·4H$_2$O (238) and a source of electrophilic fluorine (\textit{i.e.} “F$^+$”) with a visible light source ($\lambda_{\text{max}} > 400$ nm) in an optically transparent solvent (CH$_3$CN) under an argon atmosphere, it was demonstrated that the uranyl ion can catalyze the fluorination of saturated, unactivated C–H bonds in good yields (Scheme 52). It is notable that (i) visible light is sufficient to drive the photocatalytic reaction, thus avoiding specialized UV sources, and (ii) catalyst turnover does not require dioxygen to regenerate U(VI), suggesting a greater scope of photoreactions with uranyl may be possible.99

\textbf{Scheme 52.} C–H bond fluorination using “F$^+$” source. R = cyclooctyl, C$_8$H$_{15}$ (yield > 95 %); R = cyclohexyl, C$_6$H$_{11}$ (yield = 42 %); R = cyclopentyl, C$_5$H$_9$ (yield = 32 %); R = tolyl, C$_6$H$_5$CH$_2$ (yield = trace).99

The reaction proceeds through H-Atom Abstraction, HAA, and while no mechanism was directly discussed, it is clear that conversion is influenced through choice of uranyl co-ligand; using a blue LED strip, the nitrate (complex 238) gives 52\% conversion for the monofluorination of cyclooctane (\textit{i.e.} fluorocyclooctane) whereas the acetate, [UO$_2$(OAc)$_2$]·2H$_2$O (235), has ca. 8\% conversion. Conversion increased to 95\% with 238 using a high-intensity lamp.99 Recent studies on conversion rates for a series of NiIII–X HAT (hydrogen atom transfer) complexes with X = AcO$^-$ or NO$_3^-$ uncovered a 15\times rate enhancement with X = NO$_3^-$ over AcO$^-$, attributed to different electron deficiency on the O-ligand(s).100

Following this report, the chiral uranyl salen complex, [UVIO$_2$(HOEt)(L$^{\text{salen}}$)] (240; L$^{\text{salen}} = 2,2'$-((1E,1'E)-((1R,2R)-cyclohexane-1,2-diylbis(azanylylidene))bis(methanylylidene))diphenol), as
used to probe the α-cyanation of anilines with NaCN, CH₃COOH and an oxidant, and determined that relative to conversion with uranyl acetate (< 1%), conversion is greatly enhanced (> 80 %, *in-situ*; Scheme 53).⁵⁹ Though a mechanism is proposed (HAA followed by nucleophilic cyanide attack), the authors did not hypothesize why conversion is higher for the salen complex. It is likely that blocking four of the five normal equatorial uranyl binding sites reduces the deactivation (quenching) of the photoexcited state *[UVIIVO]²⁺* through non-radiative vibrational mechanisms that would be facilitated by water binding and dynamic exchange.⁵⁹

Scheme 53. α-Cyanation of anilines with *[UVIIVO(HOEt)(Lsalen)]*(240); R = H, CH₃, OCH₃, Cl, Br; R' = H, CH₃.⁵⁹

Exposure of an anoxic pyridine solution of 238 to sunlight generated *[UVIIVO₂(py)₂(NO₃)₂]₂O₂·py*(241) in 48% yield (based on [U]), which incorporates a bridging peroxide ligand, and suggests that uranyl peroxides are formed from water and not dioxygen.¹⁰¹ Larger uranyl-oxo clusters were obtained on exposure of 238 to light with in the presence of C₆H₅COOK and pyridine, so forming the mixed U(V)/U(VI) cluster *[U(V)(UVIVO₂)₃(μ-O)₃(C₆H₅COO)₃(py)]₇* (242; Scheme 54).⁶⁰ By treating 0.5 equiv. of the preformed UVO₂⁺ polymer *[UVO₂(py)₃][KI₂(py₂)]ₐ*(128) with C₆H₅COOK, the larger mixed U(IV)/U(V) U₁₂UV₅O₂₄ cluster *[K(py)₂]₂[K(py)₂][U₁₆O₂₄(C₆H₅COO)₂₄(py₂)]* (243) was crystallized, along with *[UVIIVO₂(C₆H₅COO)₃][K(py)₂]ₐ*(244; Scheme 54) and other unidentified products.⁶⁰ Functionalized uranyl peroxides have been suggested as precursors for nuclear fuel fabrication,¹⁰² while larger mixed-valence actinide oxo-clusters are postulated as relevant intermediates in environmental actinide speciation.⁶⁰
Scheme 54. Reactivity of potassium benzoate to probe likely intermediates with U(V) (top) (244) and with light and U(VI)O$_2^{2+}$ to isolate a mixed U(VI)/U(V) cluster (bottom) (242).60

A practical example of how uranyl may behave in the environment is exemplified in the degradation of the dye Rhodamine B, RhB, which is often used as a “model” organic pollutant.103 Recent work has shown that when supported by salen or derivatised catecholate ligands, uranyl ions may assist in the photodegradation of herbicidal viologen-type pollutants (Scheme 53). The complexes tested as photocatalysts for RhB destruction were a mixture of species, suggested to be geometric isomers by the authors, formed from the reaction between two asymmetric catecholamides and uranyl nitrate ([UO$_2$(Lx)(solv)]) (solv = THF (245) or C$_2$H$_5$OH (246)) and “[UO$_2$(L$^{x-y}$)]·2H$_2$O” (247)).104,105 The extent of photocatalytic decomposition of RhB in aqueous solution by 245 and 246 over three hours is found to be 90 % and 70 % vs. 65-75% for 247, respectively, with a first-order rate constant for the latter measured as approximately -0.4 s$^{-1}$. Both reports invoke de-ethylation of RhB by a *UO$_2^{2+}$ electron transfer mechanism, with further oxidative degradation by superoxyl anions, O$_2$$,\cdot$, peroxide radicals, or anion radicals, formed from water or dissolved O$_2$.106 An analogous mechanism is postulated in the degradation of the antibiotic tetracycline hydrochloride using [H$_2$-bpp][UVIO$_2$(p-nba)$_3$]$_2$ (248) and [H$_2$-bipy][(UVIO$_2$)$_4$(μ$_3$-O)$_2$(p-nba)$_6$] (249) (bpp = 1,3-di(4-pyridyl)-propane, p-Hnba = p-nitrobenzoic acid, bipy = 4,4'$'$-bipyridine) as photocatalysts with H-atom
abstraction from the phenol group followed by oxidative degradation by reactive oxygen species (ROS) occurring.107 Optimized UV-Vis spectroscopic measurements on the aqueous suspensions show degradation of 70 \% (for 248) and 75 \% (for 249) over 5 h, with rate constants of −0.2412 s−1 and −0.291 s−1, respectively, illustrating that photoactive uranyl compounds may be viable routes to the sunlight-induced photodegradation of environmental organic pollutants, particularly in uranyl-contaminated water. Indeed, uranyl carbonates, which occur naturally in many uranium-bearing ores, \textit{i.e.} rutherfordine, [UVIO\textsubscript{2}(CO\textsubscript{3})\textsubscript{2}] (250),108 have very recently been shown to be photoactive; the anion [UVIO\textsubscript{2}(CO\textsubscript{3})\textsubscript{3}]	extsuperscript{4−} (251) photooxidizes borohydrides to boric acid.109

A second developing application for uranyl photoreactivity is the \textit{in vitro} study of biomolecules, for titrimetric metal detection from environmental samples, and to elucidate structure-property relationships in bio-oligomers. Oligomeric, metal-sensing ‘DNAzymes’ (deoxyribozymes) are nucleotide sequences capable of metal-sensing, often possessing selectivity at the ppb level for metal ions. The extraction of uranium from seawater (\textit{ca.} 3 ppb)110 has been proposed using DNAzymes, and in a proof-of-concept study secondary protein structure vital to [UVIO\textsubscript{2}]2+ selectivity in a uranyl-selective DNAzyme was identified through combining controlled, [UVIO\textsubscript{2}]2+-mediated photocleavage and DNA footprinting.111 Detection limits of 0.08 \textmu g uranium per liter of seawater have recently been reported using a similar system.112 The synthetic utility of [UVIO\textsubscript{2}]2+-mediated photocleavage for protein purification and C-terminus peptide amidation (\textit{i.e.} −CONH\textsubscript{2}) has been demonstrated,113,114 and a HAA mechanism invoked. In accordance with pharmaceutically-relevant amide formation being identified as a key challenge by the American Chemical Society,115 the controlled cleavage of a peptide backbone with photo-activated uranyl represents a noteworthy alternative to traditional enzymatic or synthetic approaches.

During the course of writing this review several new reports on uranyl photocatalysis have emerged. We reported the new uranyl-phenanthroline complex [UVIO\textsubscript{2}(NO\textsubscript{3})\textsubscript{2}(Ph\textsubscript{2}phen)] (Ph\textsubscript{2}phen = 4,7-diphenyl-1,10-phenanthroline, 251) as a selective catalyst for the oxidation of benzylic C–H bonds and also C–C bond cleavage in a model of a lignin component; a large substrate scope study
was reported, alongside comparisons of activity with the parent nitrate complex 238 ([U\(^{VI}\)O\(_2\)(NO\(_3\))\(_2\)(OH\(_2\))\(_2\)·4H\(_2\)O]. Analogous H-atom abstraction from cyclohexane and the subsequent radical addition to electrophilic alkenes was also demonstrated for 238,\(^{117}\) while the oxidation of cyclohexene with [U\(^{VI}\)O\(_2\)(OPCyPh\(_2\))\(_4\)][ClO\(_4\)]\(_2\)·2EtOH (252) to a range of products has been studied.\(^{118}\) These reactions are illustrated in Scheme 55.

Scheme 55. Reactions of recently reported uranyl(VI) photocatalysts under visible light irradiation with selected hydrocarbon substrates: A) the oxidation of substrates with benzylic C-H bonds with 238 or 251; B) formation of new C-C bonds using cyclohexane and 238; C) oxidation of cyclohexene using complex 252, characterized by GC-MS (R is hydrocarbyl).\(^{116-118}\)

While demonstrating further the potential scope of uranyl photocatalysts in selective C–H bond activation, these reports also highlight that visible light is sufficient in a variety of cases to access the *[U\(^{VI}\)O\(_2\)]\(^{2+}\) ion.

9. CONCLUSIONS AND OUTLOOK

The decade since the first formal reductive silylation of [U\(^{VI}\)O\(_2\)]\(^{2+}\) was reported\(^{40}\) has seen a rapid growth in uranyl oxo-group functionalization chemistry that now includes alumination, borylation, silylation, stannylation, alkylation, and metalation of the oxo groups by elements from all
areas of periodic table, from a proton to pertinently, the transuranic neptunium. Such functionalization enables not only a controlled study of uranyl-oxo interactions with environmentally-relevant cations, but also a fundamental exploration of the chronically underexplored actinide-oxo motif.

Indeed, one of the academic, curiosity-driven research targets in uranyl chemistry is the synthesis of a cis-uranyl(VI) ion.31,62,119 We envision that a potentially more effective route to cis-uranyl complexes may be through reductive functionalization to U(V) or U(IV) dioxo complexes followed by re-oxidation; a decrease in U–O bond order upon reduction would enable the manipulation of the O–U–O bond angle.119 It is expected that such compounds could provide information on the mechanisms of yl-oxo exchange processes that occur at high pH,120 and could also be more susceptible to new transformative reactivity pathways.

Ligand design has a profound effect on the reductive functionalization chemistry of the uranyl ion. For example, using a Pacman-shaped ligand that possesses a phenylene hinge between the top and bottom N_4-donor pockets enables access to one electron $U^{VI} \rightarrow U^{V}$ reductive functionalization, whereas two electron $U^{VI} \rightarrow U^{IV}$ is not observed. Alternatively, when a redox-active dipyrrin ligand or a Pacman ligand that possesses an anthracenyl-hinge and can incorporate two uranyl(VI) ions are used in uranyl chemistry, $U^{VI} \rightarrow U^{IV}$ reductive functionalization is observed, as opposed to a one electron $U^{VI} \rightarrow U^{V}$ process. While a wide variety of ligand designs that differ in both electron donor ability and steric properties have been used in uranyl chemistry to-date, a continued effort towards new ligand designs and their effects on the reactivity of the uranyl ion should be pursued. For example, redox-active ligands have only recently been used to support uranyl oxo chemistry, and so far with great effect. For the most part, N- and O-donor ligands have been targeted for coordination to the U center; a progression towards both neutral and anionic P- and S-donor ligands to stabilize lower oxidation state complexes, or a combination of N/O- and P/S-donor groups within the same ligand to stabilize both high and low oxidation states may give rise to marked changes in the overall reactivity of the uranyl ion. Alternatively, the use of ambiphilic ligands that possess both Lewis acid and base functionality appears to be unexplored territory in uranyl chemistry,
and may provide an avenue for expanding on the functionalization chemistry accessed through coordination of the uranyl ion to unsupported Lewis acids such as tris(pentafluorophenyl)borane. Finally, the DIBAL-catalyzed route to selective mono-Group 1-metalated uranyl ions could provide opportunities for other catalyzed uranyl functionalization reactions with d- and f-group metal cations. It could also offer a general low-cost, one-pot route to the selective Group-1 cation metalation of d-block metal oxo complexes.

CV experiments have provided the reduction potentials for a number of the complexes described, confirming that while the uranyl(VI) ion is not particularly difficult to reduce, the resulting products can often be difficult to isolate as kinetically inert complexes. Increased reporting of the reduction potentials for both \(\text{U}^{\text{VI}} \text{U}^{\text{V}} \) and \(\text{U}^{\text{V}} \text{U}^{\text{IV}} \) couples would be very useful for the community and would accelerate both the understanding and exploitation of these reduced states.

Raman spectroscopic monitoring of the change in the symmetric \(\text{OUO} \) stretching frequency upon reduction of uranyl complexes should be clearer than IR spectroscopic methods since Raman spectra are less cluttered by ligand-derived absorptions. Modern spectrometers give excellent data and solution analyses are generally recommended to avoid excessive sample heating, so suitable containment methods will undoubtedly need further development.

The utility of photochemical routes to new compounds and applications for uranyl-containing materials is also becoming more recognized, with reports of targeted C–H bond photo-activation catalyzed by uranyl in organic solvents, and the use of ligand design to impart unique reactivity not seen in the prototypical uranyl compounds such as \([\text{UO}_2(\text{NO}_3)_2(\text{OH}_2)_2]\cdot\text{4H}_2\text{O}\) and \([\text{UO}_2(\text{OAc})_2]\cdot\text{2H}_2\text{O}\) in wholly- or semi-aqueous systems. Multidentate salen- or salen-type ligands that block equatorial uranyl coordination sites are excellent candidates for controlling or enhancing the photochemical reactivity of uranyl, and recent work demonstrates that calix[4]pyrroles may have potential for small molecule activation, via molecular photo-switching and activation of dioxygen. Through the use of
photochemically-robust groups, it is conceptually possible to improve both the quantum yield and conversion efficiency of photocatalytic reactions involving the uranyl(VI) ion. As visible light induced C–H bond cleavage and functionalization reactions are rapidly becoming commonplace in organic chemistry, further examples of uranyl-mediated, visible-light induced C–H bond cleavage reactions will undoubtedly be forthcoming over the next several years. Practically, we note also that photochemical reduction of $[\text{U}^{VI}\text{O}_2(\text{NO}_3)_2(\text{OH}_2)_2] \cdot 4\text{H}_2\text{O}$ to hydrated $[\text{U}^{IV}\text{O}_2]$ has previously been examined, and while not historically considered viable for industrial implementation in nuclear waste remediation, recent applications, particularly environmental (uranium detection), biochemical (peptide photocleavage) and geologic ($[\text{UO}_2(\text{CO}_3)_3]^{4-}$ photoreactivity), continue to be explored and, we hope, applied.

As a final point, we also note that previously almost all uranyl chemistry has been studied with the aim of understanding the fundamental electronic structure and reactivity of the cation, and its behavior in the environment. Now, as a wide variety of new oxo chemistry is developed, there should be opportunities for these reactions, both stoichiometric and catalytic, to inform metal oxo chemistry being carried out in other areas of the periodic table.

AUTHOR INFORMATION

Corresponding Authors
Polly L. Arnold, Jason B. Love

ORCID
Polly L. Arnold: 0000-0001-6410-5838
Bradley E. Cowie: 0000-0002-9648-063X
Jason B. Love: 0000-0002-2956-258X

Biographies
Dr Bradley E. Cowie obtained his Ph.D. in 2015 working under the supervision of Prof. David J. H. Emslie at McMaster University in Hamilton, Ontario, Canada. His Ph.D. research was focussed on
the synthesis of late transition metal complexes bearing Group 13 Lewis acid-containing ambiphilic ligands, and their potential use for small molecule activation. In November 2015, he joined Professors Polly L. Arnold (FRS OBE) and Jason B. Love at the EaStCHEM School of Chemistry, University of Edinburgh, to explore new avenues for uranyl ion activation and reductive functionalization.

Jamie M. Purkis is currently pursuing his Ph.D. with Professors Polly L. Arnold (FRS OBE) and Jason B. Love, at the University of Edinburgh in the United Kingdom (UK), and Dr. Jonathan Austin, of the National Nuclear Laboratory, UK. His work focuses on developing coordination chemistry of new photoactive uranyl complexes towards the selective activation of C–H bonds in organic substrates. He obtained his Masters Degree in Chemistry at the University of Southampton, UK, in 2015 with Professor Gill Reid, studying macrocyclic complexes of Group 2 dications.

Dr Jonathan Austin is a senior researcher in the Chemical and Process Modelling team at the National Nuclear Laboratory (NNL) in the United Kingdom (UK). Jonathan has a PhD in quantum mechanics modelling of heavy elements, including uranyl complexes in aqueous solution, from the University of Manchester, UK. In 2009 Jonathan joined the Chemical and Process Modelling team at the NNL, working in the area of radioactively contaminated effluents where he develops and applies models of plants used for the storage of spent nuclear fuel and for water treatment. Jonathan provides industrial supervision to a number of PhDs funded by the Nuclear Decommissioning Authority (UK).

Professor Jason B Love FRSC holds BSc and PhD degrees from the University of Salford, and undertook postdoctoral positions at the Universities of Sussex, British Columbia, and Nottingham before being awarded a lectureship and Royal Society University Research Fellowship at the University of Sussex in 1999. He is currently Professor of Molecular Inorganic Chemistry at the University of Edinburgh and is the Head of Inorganic Chemistry. He has researched chemistry across the Periodic Table, focusing on small molecule redox catalysis in relation to energy and resource
sustainability, ligand design strategies for d- and f-element chemistry, supramolecular catalysis, and metal recovery processes.

Professor Polly L Arnold OBE FRS FRSE FRSC is the Crum Brown Chair of Chemistry at the University of Edinburgh. She holds degrees from Oxford and Sussex, and was a Fulbright postdoctoral fellow at the Massachusetts Institute of Technology in the US prior to starting a lectureship in the UK in 1999. Her research is focused on exploratory synthetic chemistry of the f-block metals, in particular the actinides, and the development of homogeneous catalysis using the earth-abundant rare earths. www.homepages.ed.ac.uk/parnold. Polly also made 'A Chemical Imbalance', a call to action for equality of opportunity for women and minorities in STEM, and was awarded an OBE in 2017 for services to chemistry and women in STEM. www.chemicalimbalance.ed.ac.uk.

ACKNOWLEDGEMENTS

The authors thank the EPSRC-UK grants EP/N022122/1 and EP/M010554/1, the European Commission Directorate General and Actinet JRC Userlab (ACTINET-I3-CP-CSA-JRP-232631), the Natural Sciences and Engineering Research Council of Canada for an NSERC Post-Doctoral Fellowship (BEC) and the UK National Nuclear Laboratory for funding (JMP). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740311).

ABBREVIATIONS

py = pyridine

Opy = pyridine-N-oxide
dme = 1,2-dimethoxyethane
THF = tetrahydrofuran
DMSO = dimethylsulfoxide
OEt$_2$ = diethyl ether
OTf = OS(O)$_2$CF$_3$
TMEDA = Me$_2$N(CH$_2$)$_2$NMe$_2$
2,2'-bpy = 2,2'-bipyridine
4,4'-bpy = 4,4'-bipyridine
Cp = cyclopentadienyl
Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl
Mes/mesityl = 2,4,6-trimethylphenyl
Me = methyl
Et = ethyl
'iPr = iso-propyl
'Bu = tert-butyl
'iBu = iso-butyl
Ph = phenyl
DMAP = 4-(dimethylamino)pyridine
[CoCp*$_2$] = decamethylcobaltocene
pin = pinacolato
cat = catecholato
tolyl = p-C$_6$H$_4$Me
ferrocenyl = [Fe(η^5-C$_5$H$_5$)(η^5-C$_5$H$_4$)]
Fc = ferrocene, [Fe(η^5-C$_5$H$_4$)$_2$]
Fc$^+$ = ferrocnium, [Fe(η^5-C$_5$H$_4$)$_2$]$^+$
NO$_3^-$ = nitrate
AcO$^-$ = acetate
\(\text{CO}_3^{2-} = \text{carbonate} \)

2.2.2-crypt = 2.2.2-cryptand

\(-\text{c-} = \text{crown, a crown ether} \)

\(\mu- = \text{a bridging ligand between two or more metals} \)

\(\varepsilon = \text{molar absorptivity} \)

\(\text{mol} = \text{moles} \)

\(\text{L} = \text{litres} \)

\(\text{cm} = \text{centimetres} \)

\(\mu\text{g} = \text{micrograms} \)

\(\text{mM} = \text{millimolar} \)

\(\text{M} = \text{molar} \)

\(\text{Å} = \text{angstroms} \)

\(^\circ = \text{degrees} \)

\(\text{ppb} = \text{parts per billion} \)

\(\text{N''} = \text{N(SiMe}_3\text{)}_2 \)

\([\text{HPy}]^+ = \text{pyridinium} \)

\(\text{uranyl(VI)} = [\text{U}^{VI}\text{O}_2]^{2+} \)

\(\text{uranyl(V)} = [\text{U}^{V}\text{O}_2]^+ \)

\(O_{\text{exo}} = \text{Exogenous oxo atom bound to the uranyl ion} \)

\(O_{\text{endo}} = \text{Endogenous oxo atom bound to the uranyl ion} \)

\(\text{CCI} = \text{cation-cation interaction} \)

\(\text{ROS} = \text{reactive oxygen species} \)

\(L^{\text{Me}} = \text{a macrocyclic “Pacman” ligand; dimethylphenylene hinge between } N_4\text{-donor pockets, methyl substituents on } meso\text{-carbon atom of each } N_4\text{-donor pocket} \)

\(L^{\text{Et}} = \text{a macrocyclic “Pacman” ligand; dimethylphenylene hinge between } N_4\text{-donor pockets, ethyl substituents on } meso\text{-carbon atom of each } N_4\text{-donor pocket} \)

\(L^A = \text{a macrocyclic “Pacman” ligand; anthracenylene hinge between } N_4\text{-donor pockets, ethyl substituents on } meso\text{-carbon atom of each } N_4\text{-donor pocket} \)

\(L^m = \text{meso-Bis(pentafluorophenyl)dipyriamethylin} \)
L' = a mono-anionic, tetradentate dipyrrin ligand

L'' = a radical anion of L'

^Aracnac = ArNC(Ph)CHC(Ph)O (Ar = 3,5-tBu_2C_6H_3)

^iBuacnac = 'BuNC(Ph)CHC(Ph)O

Ar_2nacnac = ArNC(Me)CHC(Me)NAr (Ar = 2,6-iPr_2C_6H_3)

^AracnacSiMe_3 = ArNC(Ph)CHC(Ph)OSiMe_3 (Ar = 3,5-tBu_2C_6H_3)

NPh^F = -N(C_6F_5)_2

NPh^FP = -N(C_6F_5)(C_6H_5)

NPh^FPy = -N(C_6F_5)(C_5H_4N)

NAr^FP = -N(3,5-\{CF_3\}_2-C_6H_3)(C_6H_3)

DOPO^q = 2,4,6,8-tetra-1-oxo-1H-phenoxazin-9-olate (q = monoanionic quinone form)

dippIQ = 4,6-di-1-tert-butyl-2-\{2,6-diisopropylphenyl\}imino\} quinone

dippISQ = 4,6-di-1-tert-butyl-2-\{2,6-diisopropylphenyl\}imino\} semiquinone

dippAP = 4,6-di-1-tert-butyl-2-\{2,6-diisopropylphenyl\}amido\} phenolate

MesPDi^Me = 2,6-((Mes)N=CMe)_2C_5H_3N

^iBu-MesPDi^Me = 2,6-((Mes)N=CMe)_2-p-C(CH_3)_3-C_5H_2N

^H N4 = 2,11-diaza[3,3](2,6)pyridinophane

^MeN4 = N,N'-dimethyl-2,11-diaza[3,3](2,6)pyridinophane

tmtaa = dibenzotetramethyl-tetraaz[14]annulene

L^iBu = 2,6-bis[1-\{(2-hydroxy-3,5-di-1-tert-butylphenyl)imino\}ethyl]pyridine

L^nap = 2,6-bis[1-\{(2-hydroxynaphthyl)imino\}ethyl]pyridine

BPPA = bis(2-picoly)(2-oxybenzyl)amine

Mesaldien = N,N'-\{2-aminomethyl\}diethylenebis(salicylidene-imine)

H_2salan-^iBu_2 = N,N'-bis(2-hydroxybenzyl-3,5-di-1-tert-butyl)-1,2-dimethylaminomethane

salen = (2'-O-C_6H_4-CH=NCH_2)_2

salfen = (2'-O-3,5-(^iBu)_2-CH=N)_2-(FeCp_2)

TPA = tris(2-pyridylmethyl)amine
H₂dpaea = bis(pyridyl-6-methyl-2-carboxylate)-ethylamine
H₂salophen = N,N'-phenylene-bis(salicylideneimine)
H₂salophen-Bu₂ = N,N'-phenylene-bis(3,5-di-tert-butylsalicylideneimine)
H₂acacen = N,N'-ethylene-bis(acetylacetoneimine)
BIPMH = HC(PPh₂NSiMe₃)₂
L₅alen = 2,2'-(1E,1'E)-cis(1R,2R)-cyclohexane-1,2-diylbis(azanylylidene)bis(methanylylidene)diphenol
KL₅acnac = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate
H₃trensal = 2,2',2''-tris(salicylideneimino)triethylamine
SCHS = [HC(PPh₂S)]⁻
SCS = [C(PPh₂S)₂]²⁻
DPPFO₂⁻ = [Fe{η⁶-C₅H₄(Ph₂PO)}₂]⁻
dipyR = RC(C₄H₂NH)₂ (R = tolyl, mesityl, ferrocenyl, p-C₆H₄OMe)
MeIm = 1-methylimidazole
dbm = OC(Ph)CHC(Ph)O
dppmo = Ph₂P(Ο)CH₂P(Ο)PPh₂
TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl
bpp = 1,3-di(4-pyridyl)-propane
p-Hnba = p-nitrobenzoic acid
phen = 1,10-phenanthroline
DIBAL = diisobutylaluminum hydride
HEPES = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
NMR = nuclear magnetic resonance
IR = infrared
PFGSTE = Pulsed-Field Gradient Stimulated Echo
DFT = density functional theory
UV-Vis-NIR = ultra violet-visible-near infrared
REFERENCES

CV = cyclic voltammetry

101

102

oxo-binding
Groups 1 and 14

oxo-functionalisation
with reduction
2010: B, Al, Si
2019: B, Al, Si, Sn, R, d-Z-metal

light-driven ‘oxyI’ formation
- H-atom abstraction
- C-C bond cleavage
- substrate oxidation