Spin orders and lattice distortions of geometrically frustrated 6H-perovskites Ba3BRu2O9 (B=La3+, Nd3+, and Y3+)

Citation for published version:

Digital Object Identifier (DOI):
10.1103/PhysRevB.87.134402

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review B

Publisher Rights Statement:
Copyright © 2013 by the American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author(s) and the American Physical Society.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Spin orders and lattice distortions of geometrically frustrated 6H-perovskites $\text{Ba}_3B'R\text{u}_2\text{O}_9$
\hspace{1cm} ($B' = \text{La}^{3+}, \text{Nd}^{3+}, \text{and} \ Y^{3+}$)

Mark S. Senn, Simon A. J. Kimber, Angel M. Arevalo Lopez, Adrian H. Hill, and J. Paul Attfield

1Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
2ESRF, Boîte Postale 156, F-38042 Grenoble Cedex 9, France

The magnetic and crystal structures of the title materials have been investigated using high-resolution neutron and synchrotron x-ray powder diffraction. Ferromagnetic Ru dimers are observed in the spin-ordered ground states of all three materials, evidencing an intradimer double exchange interaction. Antiferromagnetic order between dimers breaks the degeneracy of the triangular lattice but no distortion of the $B' = \text{La}$ and Y structures is observed. The magnetic ordering transition temperature increases with the radius of the B' cation. An anomalous 120 K structural transition in $\text{Ba}_3\text{NdRu}_2\text{O}_9$ is attributed to Jahn-Teller distortion, evidenced by large-amplitude Γ_6 deformations of the NdO$_6$ octahedra. Further lattice anomalies accompany magnetic ordering transitions at 24 and 18 K in $\text{Ba}_3\text{NdRu}_2\text{O}_9$. Nd spins order ferromagnetically and a substantial magnetic anisotropy leads to large coercivity and $\frac{1}{2}$-magnetization steps in the magnetic hysteresis loop.

DOI: 10.1103/PhysRevB.87.134402 PACS number(s): 75.25.-z, 75.50.Dd, 75.50.Ee, 64.70.K-
FIG. 1. (Color online) Crystal structure of 6H \(\text{Ba}_3B'\text{Ru}_2\text{O}_9 \) hexagonal perovskites: (a) projection on the \(ac \) plane; (b) a \(\text{Ru}_2\text{O}_9 \) dimer; (c) the triangular lattice of \(\text{Ru}_2\text{O}_9 \) dimers with light/dark shading of dimers centered in the \(z = \frac{1}{4} \) and \(z = \frac{3}{4} \) planes.

magnetic peaks for both materials are indexed by the \((0 \frac{1}{2} 0) \) propagation vector, equivalent to an orthorhombic \(a_o = \sqrt{3}a, b_o = \sqrt{3}a, c_o = c \) superstructure of the hexagonal \(P6_3/mmc \) cell. The irreducible representations and basis vectors of the Ru spins in \(P6_3/mmc \) under the propagation vector \((0 \frac{1}{2} 0) \), generated from the program BASIREPS of the FULLPROF suite, are shown in Table II.

Models containing antiferromagnetic \(\text{Ru}_2\text{O}_9 \) spin dimers, as proposed from previous magnetic heat capacity results, did not fit the magnetic intensities of \(\text{Ba}_3\text{LaRu}_2\text{O}_9 \). However, a model [Fig. 2(b), inset] of ferromagnetic dimers described by the basis vectors from two different representations accounts well for the observed magnetic diffraction intensities [Fig. 2(b)]. The \(\Psi_1(\Gamma_5) \) basis fits the \((0 \frac{1}{2} l) \) magnetic peaks but predicts zero intensity for the \((1 \frac{1}{2} 0) \) peak which is clearly observed in Fig. 2(a), hence the need for an additional \(\Psi_2(\Gamma_3) \) component. \(\Psi_1(\Gamma_5) \) and \(\Psi_2(\Gamma_3) \) respectively describe Ru spin components parallel to the \(a_o \) and \(c_o \) vectors of the orthorhombic supercell, with values \(m_x = 1.3(1)\mu_B \) and \(m_z = 0.6(2)\mu_B \), and resultant moment \(1.6(2)\mu_B \), at 1.6 K. The magnetic peaks for \(\text{Ba}_3\text{YRu}_2\text{O}_9 \) at 1.6 K are less intense and the corresponding refined components are \(m_x = 0.4(3)\mu_B \) and \(m_z = 0.2(5)\mu_B \), with a resultant moment of \(0.5(6)\mu_B \). Although the fitting errors on these values are large, the appearance of the same magnetic reflections including a weak \((1 \frac{1}{2} 0) \) peak [Fig. 2(a), inset] demonstrates that both magnetic bases are present for \(\text{Ba}_3\text{YRu}_2\text{O}_9 \). The moments in both materials are significantly reduced from the ideal value of \(2.5\mu_B \), consistent with a frustrated spin order. Nearest-neighbor Ru-Ru alignments are ferromagnetic along one side and antiferromagnetic on two sides of each plaquette in the

![Diagram](image-url)
triangular ab-plane lattice of dimers. Breaking of degeneracy should lead to an orthorhombic distortion of the hexagonal lattice. This was tested by an orthorhombic $Cmcm$ supercell to the low-temperature HRPD data, but no significant deviation of the a_0/b_0 ratio was found, as shown in Fig. 3.

B. Ba$_3$NdRu$_2$O$_9$

A structural transition at 120 K and two probable spin-ordering transitions, at 24 and 17 K, were previously reported in this material. Peak splittings consistent with the reported distortion from hexagonal $P6_3/mmc$ to monoclinic $C2/c$ symmetry at 120 K were observed in the low-temperature x-ray diffraction patterns. The thermal evolution of lattice parameters extracted from Rietveld fits to the synchrotron powder diffraction data are plotted in Fig. 4(a). The angle β increases from 90° to around 90.9° on cooling through the transition, and the cell lengths vary monotonically down to the onset of magnetic order at 24 K. Lattice parameters in the range 1.6–30 K were extracted from the neutron powder diffraction data [Fig. 4(b)]. All four monoclinic lattice parameters have anomalies at $T_1 = 24$ K, and a further discontinuity at $T_2 = 18$ K is observed in the variation of the β angle.

To gain further insights into the structural transition in Ba$_3$NdRu$_2$O$_9$ and the structural anomalies accompanying the magnetic transitions, we have performed distortion mode analyses of the monoclinic structure with respect to the hexagonal parent $P6_3/mmc$ symmetry using the ISODISPLACE program and the JEDIT interface to the Rietveld refinement program TOPAS. The results from fits to the synchrotron and neutron powder diffraction data are shown in Fig. 5. The distortion modes are labeled according to the site in the $P6_3/mmc$ space group symmetry. The Γ_6 modes are the primary order parameters for the structural phase transition as they have the largest amplitudes, and also because a Γ_6 distortion mode alone would imply the final $C2/c$ space group symmetry. The largest amplitude Γ_6 modes that emerge below the 120 K structural transition [Fig. 5(a)] involve the O2 oxygen atoms which are coordinated to the Nd$^{3+}$ ions. The O2 sites also coordinate Ru, which may account for the large amplitude of the Γ_6(Ru) mode. Amplitudes from the neutron refinements in Fig. 5(b) show a large change in one of the $\Gamma_{a}(O2)$ modes below the 25 K magnetic transition. The effects of this on the NdO$_6$ coordination octahedron are illustrated in Fig. 6. The Nd-O bond distances do not change significantly, but order-parameter-like changes in O-Nd-O bond angles occur below the 25 K transition. Refined structural parameters for Ba$_3$NdRu$_2$O$_9$ at 1.6 K are shown as Supplemental Material.

Magnetic neutron diffraction peaks were observed below the previously reported $T_1 = 25$ K and $T_2 = 18$ K magnetic transitions. Magnetic diffraction peaks [Fig. 7(a)] observed...
FIG. 4. Thermal evolution of lattice parameters for Ba$_3$NdRu$_2$O$_9$: (a) through the 120 K hexagonal to monoclinic phase transition, showing parameters from Rietveld fits to synchrotron powder x-ray diffraction data; (b) around the $T_1 = 24$ K and $T_2 = 18$ K magnetic transitions, using data from fits to neutron powder diffraction data, with changes in axis lengths relative to 30 K values of $a = 5.91997(3)$, $b = 10.25053(7)$, and $c = 14.77275(10)$ Å.

at 20 K indexed on a (0 0 0) propagation vector of the C2/c cell. They were fitted by a ferromagnetic order of Nd$^{3+}$ moments parallel to c [Fig. 7(b)], corresponding to the $\Psi_3(\Gamma_2)$ basis for (0 0 0) order in Table III. The refined magnitude of 1.56(7)μ_B at 20 K is consistent with the previously published result obtained from neutron powder diffraction of 1.65(8) at 10 K. No direct evidence for simultaneous ordering of Ru moments at T_1 is observed, although this is known to occur in materials such as the related double perovskite Ba$_2$NdRuO$_6$. Fits to our data show that any ferromagnetically ordered Ru component has magnitude substantially lower than 0.4μ_B.

Below $T_2 = 18$ K, additional magnetic peaks characterized by two propagation vectors appear [Fig. 7(a)]. The (001) peak, which is systematically absent in the nuclear scattering, evidences a further, antiferromagnetic, (0 0 0) Nd spin component. This has refined magnitude 0.5(1)μ_B at 1.6 K and can be modeled by a canting of the Nd moment along the a or b directions. Canting parallel to b is considered most likely as this is described by the $\Psi_3(\Gamma_2)$ basis vector belonging to the same representation as the ferromagnetic $\Psi_3(\Gamma_2)$ Nd spin component (Table III). Several further magnetic Bragg peaks ($\frac{1}{2}$ 1 2), ($\frac{1}{2}$ 1 1), and ($\frac{1}{2}$ 1 0) [Fig. 7(a)] that belong to the propagation vector ($\frac{1}{2}$ 0 0) were also observed. Symmetry analysis of the Ru sublattice in space group C2/c under this propagation vector is summarized in Table III. The Ru site is split in this analysis, but the data available did not enable the two Ru spins to be fitted independently and only models with either a parallel or an antiparallel constraint on the moments within dimers were considered. A model of ferromagnetic Ru dimers, coupled antiferromagnetically to neighboring dimers [Fig. 7(c)], which transforms under Γ_1 of Table III, was found to give the best fit. This is equivalent to the ordered Ru:mx$_i$ components observed in Ba$_3$LaRu$_2$O$_9$ and Ba$_3$YRu$_2$O$_9$ above. However, there are still some discrepancies between observed and calculated
magnetic intensities, and a more extensive set of magnetic diffraction data would be needed to determine the full spin-ordered structure. The temperature evolution of the three \(\text{Ba}_3\text{NdRu}_2\text{O}_9 \) magnetic components is shown in Fig. 7(b). The ferromagnetic Nd: \(m_x(0 \ 0 \ 0) \) moment is an order parameter for the \(T_1 = 25 \) K transition, and the antiferromagnetic Nd: \(m_y(0 \ 0 \ 0) \) and Ru: \(m_z(\frac{1}{2} \ 0 \ 0) \) components have similar behavior below \(T_2 = 18 \) K.

Magnetization-field loops for \(\text{Ba}_3\text{NdRu}_2\text{O}_9 \) are shown in Fig. 7(d). The saturated moment of \(\sim 1.2 \mu_B/\text{formula unit} \) at \(2-20 \) K is comparable to the magnitude of the ordered ferromagnetic Nd: \(m_z(0 \ 0 \ 0) \) component. A simple hysteresis loop with little coercivity is observed at 15 and 20 K, but a substantial coercive field of 1.1 T is observed at 2 K. In addition, \(\frac{1}{2} \) (of maximum) -magnetization steps are observed in the 2 K loop. These evidence coherent reversal of ferromagnetic Nd chains or planes, as discussed later.

IV. Discussion

Magnetic neutron diffraction shows that ferromagnetic Ru spin dimers are present in all of the \(\text{Ba}_3\text{B}^3\text{Ru}_2\text{O}_9 \) \((B'^\prime = \text{La, Nd, Y}) \) ground states. This is in contrast to predictions for these materials, and to observations of antiferromagnetic dimers in \(B'^\prime = \text{Co}^{2+} \) and \(\text{Ni}^{2+} \) materials and evidence for antiferromagnetic or spin-singlet \((\text{Ru}^{5+})_2 \) and \((\text{Ru}^{4+})_2 \) dimers in charge-ordered \(\text{Ba}_3\text{NaRu}_2\text{O}_9 \). The key difference is that the Ru ions in the latter materials have integral charge states, whereas in the rare earth series an average \(\text{Ru}^{4.5+} \) state is apparent with no evidence for charge ordering. Ferromagnetism is favored by delocalization of the single minority (down-)spin \(t_{2g} \) electron in each dimer, so the idealized orbital populations are \(t_{2g}(\uparrow)^3 t_{2g}(\downarrow)^0 \). This is a molecular example of the double (Zener) exchange interaction observed in mixed valent manganese oxide perovskites such as \(\text{La}_0.7\text{Sr}_{0.3}\text{MnO}_3 \). The short Ru-Ru separation in the dimers \((D_{\text{Ru-Ru}} \sim 2.5 \) Å) facilitates this direct interaction between the \(t_{2g} \) orbitals.

The same antiferromagnetic order of ferromagnetic Ru dimers is observed in \(\text{Ba}_3\text{B}^3\text{R}_2\text{O}_9 \) for \(B'^\prime = \text{Y, Nd, and La} \), but the respective ordering temperatures of 4.5, 18, and 22 K vary markedly. This is attributed to a lattice effect controlled by the \(B'^{3+} \) cation size—such sensitivity is typical in perovskite-related oxides. Figure 8 shows that the magnetic ordering temperature (reported Néel temperatures for \(B'^\prime = \text{rare earth and Y;3} \) the value for \(\text{Bi}^{3+} \) is assigned from the magnetic heat capacity; spin freezing transition for \(B'^\prime = \text{In}^{3+} \) increases smoothly with the ionic radius of \(B'^\prime \). This variation implies that the same antiferromagnetic arrangement of ferromagnetic dimers is present throughout the series. The observed \(T_2 = 18 \) K of \(\text{Ba}_3\text{NdRu}_2\text{O}_9 \) follows the trend for the other \(\text{Ba}_3\text{B}^3\text{R}_2\text{O}_9 \) materials in Fig. 7, showing that the lattice distortion and ordering of Nd moments at higher temperatures appear not to perturb the Ru spin order.

Although the observed long-range spin order breaks the triangular degeneracy of the lattice, no evidence for an orthorhombic distortion of the hexagonal lattice is evident in \(\text{Ba}_3\text{LaRu}_2\text{O}_9 \) (Fig. 3), which has the highest \(T_N \) of the \(B'^\prime = \text{rare earth series}. Hence, the increase in \(T_N \) with \(B'^\prime \) size does not result from relief of magnetic frustration, and is probably related to geometric enhancement of superexchange interactions between dimers.

Table III. Irreducible representations and basis vectors of the space group \(C2/c \) for Ru at \((x,y,z) = (0.994, 0.332, 0.836) \) under propagation vector \((\frac{1}{2} \ 0 \ 0) \), and for Nd at \((0,0,0) \) under vector \((0 \ 0 \ 0) \), in \(\text{Ba}_3\text{NdRu}_2\text{O}_9 \). Ru is split into independent sites shown as Ru1 and Ru2. \(\Psi_1(\Gamma_1') \) and \(\Psi_2(\Gamma_1') \) respectively describe the ferromagnetic (at \(T_1 \)) and antiferromagnetic (at \(T_2 \)) orders of Nd moments under propagation vector \((0 \ 0 \ 0) \), and \(\Psi_1(\Gamma_1') \) was used for the \((\frac{1}{2} \ 0 \ 0) \) magnetic order of Ru moments at \(T_2 \).

<table>
<thead>
<tr>
<th>Irreducible representations</th>
<th>Basis vectors</th>
<th>(\text{Ru}_1(x,y,z)/\text{Ru}_2(-x,-y,z+\frac{1}{2})/\text{Nd}(x,y,z))</th>
<th>(\text{Ru}_2(x,-y,-z+\frac{1}{2})/\text{Ru}_1(-x,-y,-z)/\text{Nd}(-x,-y,-z+\frac{1}{2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(\Psi_1)</td>
<td>(m_x) (m_y) (m_z) (m_x) (m_y) (m_z)</td>
<td>(m_x) (m_y) (m_z) (m_x) (m_y) (m_z)</td>
</tr>
<tr>
<td>(\Psi_2)</td>
<td>(0) (1) (0) (0) (0) (1)</td>
<td>(1) (0) (1) (0) (1) (0)</td>
<td></td>
</tr>
<tr>
<td>(\Psi_3)</td>
<td>(0) (0) (1) (0) (0) (1)</td>
<td>(0) (0) (-1) (0) (0) (1)</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(\Psi_1)</td>
<td>(1) (0) (0) (-1) (0) (0)</td>
<td>(0) (0) (1) (0) (0) (1)</td>
</tr>
<tr>
<td>(\Psi_2)</td>
<td>(0) (1) (0) (0) (0) (1)</td>
<td>(0) (-1) (0) (0) (1) (0)</td>
<td></td>
</tr>
<tr>
<td>(\Psi_3)</td>
<td>(0) (0) (1) (0) (0) (1)</td>
<td>(0) (0) (1) (0) (0) (1)</td>
<td></td>
</tr>
</tbody>
</table>
Ba$_3$NdRu$_2$O$_9$ is remarkable in displaying a lattice distortion at a relatively high temperature (120 K) that is not observed in any of the other Ba$_3$B$'$Ru$_2$O$_9$ (B$'^3$ = rare earth) materials.3 This is clearly not a size-driven effect, as the analogs with larger B$'$ = La and smaller B$'$ = Y both remain hexagonal down to at least 2 K. Crystal-field effects on 4f^3 rare earth ion lattices are usually weak, but are the only plausible explanation for the anomalous lattice behavior of Ba$_3$NdRu$_2$O$_9$. The $^4I_{9/2}$ ground state of 4f^3 Nd$^{3+}$ splits into five Kramers doublets, and the lowest two in energy are degenerate in an octahedral crystal field, and so this environment is sensitive to Jahn-Teller distortion. This is corroborated by our structural data in Figs. 4 and 5, which show that the largest distortion amplitudes at the 120 K transition are predominantly Γ_{16} modes associated with local deformations of the NdO$_6$ octahedra. These break the equivalence of Nd-O distances and O-Nd-O angles (Fig. 6).

Magnetic order of the Nd$^{3+}$ spins induces further lattice distortion through spin-orbit coupling, as evidenced by the cell parameter anomalies at the magnetic T_1 and T_2 transitions shown in Fig. 4(b). The distortion mode analysis in Fig. 5(b) demonstrates that a Γ_4 distortion of the NdO$_6$ octahedra is the main internal order parameter for the additional deformation below the $T_1 = 24$ K onset of magnet order. This twisting deformation creates further disparity between O-Nd-O angles but does not affect the Nd-O distances.

The presence of lattice distortions and two magnetically active cations makes analysis of the spin order in Ba$_3$NdRu$_2$O$_9$ more complex than that in the La and Y analogs, but the main features are clear from the present powder neutron study. The $T_1 = 24$ K transition corresponds to a ferromagnetic order of only Nd$^{3+}$ spins, parallel to the c axis. Two antiferromagnetic modes emerge at the $T_2 = 18$ K transition. The
antiferromagnetic order of Ru dimers is like that observed in Ba$_3$LaRu$_2$O$_9$ and Ba$_3$YRu$_2$O$_9$, and this induces a further antiferromagnetic component to the Nd$^{3+}$ spin order, corresponding to an overall canting of the moments. The concomitant ordering of two modes that belong to different propagation vectors implies coupling between the two propagation vectors, which would necessitate a doubling of the Γ^+ point such that it contains both representations. This may account for why a complete description of the magnetic structure is not achieved within the present representational analysis. Simulated annealing of the magnetic structure in a larger supercell (containing eight Nd and 16 Ru sites) was attempted but did not lead to any physically reasonable solutions. Complex magnetic orders with narrow temperature windows between successive transitions are common in metallic rare earth compounds, but are unusual in insulating rare earth–transition metal oxides.

The lattice distortions of Ba$_3$NdRu$_2$O$_9$ evidently create a substantial anisotropy, as a large magnetic coercivity is observed at 2 K [Fig. 7(d)] and the reversal of magnetization proceeds via $\frac{1}{3}$-magnetization steps; $\uparrow\uparrow\uparrow \rightarrow \downarrow\downarrow\downarrow \rightarrow \uparrow\downarrow\uparrow \rightarrow \downarrow\uparrow\uparrow \rightarrow \uparrow\uparrow\uparrow$ as magnetic field is cycled up \rightarrow down \rightarrow up. Two models for the $\uparrow\downarrow\uparrow \frac{1}{3}$-magnetization phase are plausible—an order of 2 $\uparrow\downarrow\uparrow 1$-spin chains parallel to the c axis, as observed in some frustrated triangular lattices such as CoV$_2$O$_6$, or an $\uparrow\downarrow\uparrow \uparrow\downarrow$ order of successive Nd planes perpendicular to c. High-field neutron diffraction will be needed to distinguish between these possibilities.

V. CONCLUSIONS

Ferromagnetic Ru spin dimers are present in Ba$_3$B$'$(R$'$$_2O_9$ (B$'$ = La, Nd, Y), in contrast to antiferromagnetic dimers reported in other Ba$_3$B$'$Ru$_2$O$_9$ types, evidencing an intradimer double exchange coupling. Antiferromagnetic order of the dimers breaks the degeneracy of the frustrated triangular lattice, but no accompanying lattice distortion is observed. Ba$_3$NdRu$_2$O$_9$ is unique among the Ba$_3$YRu$_2$O$_9$ types, evidencing an intradimer double exchange coupling. Antiferromagnetic order of the dimers breaks the degeneracy of the frustrated triangular lattice, but no accompanying lattice distortion is observed. Ba$_3$NdRu$_2$O$_9$ is unique among the Ba$_3$YRu$_2$O$_9$ types, evidencing an intradimer double exchange coupling.

ACKNOWLEDGMENTS

We thank Dr A. Daoud-Aladine and Dr P. Manuel for beamline support at ISIS. We acknowledge EPSRC, STFC, the Leverhulme Trust, and the Royal Society for support and the provision of ISIS and ESRF beam time.

FIG. 8. Plot of the reported Ru spin-ordering temperatures of 6H-perovskites Ba$_3$B$'$Ru$_2$O$_9$ against ionic radius of the trivalent B$'$ ions.

<table>
<thead>
<tr>
<th>Radii (Å)</th>
<th>T_c (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>30</td>
</tr>
<tr>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>1.1</td>
<td>10</td>
</tr>
</tbody>
</table>

\[T_c = \frac{k_B T}{\mu_B} \]

Where k_B is Boltzmann's constant, T is temperature, and μ_B is the magnetic moment.

\[\mu_B = \frac{e}{2m_e} B' \]

Where e is the electron charge, $2m_e$ is the effective mass of the electron, and B' is the magnetic field.

\[T_c = \frac{1}{2\pi} \left(\frac{\mu_B}{k_B} \right)^2 |B'| \]

Where μ_B is the magnetic moment, k_B is Boltzmann's constant, and $|B'|$ is the magnetic field.

\[B' = \frac{1}{2\pi} \left(\frac{\mu_B}{k_B} \right)^2 T_c \]

Where B' is the magnetic field, μ_B is the magnetic moment, k_B is Boltzmann's constant, and T_c is the temperature.

\[T_c = \frac{1}{2\pi} \left(\frac{\mu_B}{k_B} \right)^2 \left(\frac{1}{|B'|} \right) \]

Where T_c is the temperature, μ_B is the magnetic moment, k_B is Boltzmann's constant, and $|B'|$ is the magnetic field.

\[\mu_B = \frac{e}{2m_e} \left(\frac{k_B T_c}{1/2\pi} \right)^2 |B'| \]

Where e is the electron charge, $2m_e$ is the effective mass of the electron, k_B is Boltzmann's constant, T_c is the temperature, and $|B'|$ is the magnetic field.

\[T_c = \frac{1}{2\pi} \left(\frac{\mu_B}{k_B} \right)^2 |B'| \]

Where T_c is the temperature, μ_B is the magnetic moment, k_B is Boltzmann's constant, and $|B'|$ is the magnetic field.

\[B' = \frac{1}{2\pi} \left(\frac{\mu_B}{k_B} \right)^2 T_c \]

Where B' is the magnetic field, μ_B is the magnetic moment, k_B is Boltzmann's constant, and T_c is the temperature.

\[T_c = \frac{1}{2\pi} \left(\frac{\mu_B}{k_B} \right)^2 \left(\frac{1}{|B'|} \right) \]

Where T_c is the temperature, μ_B is the magnetic moment, k_B is Boltzmann's constant, and $|B'|$ is the magnetic field.

\[\mu_B = \frac{e}{2m_e} \left(\frac{k_B T_c}{1/2\pi} \right)^2 |B'| \]

Where e is the electron charge, $2m_e$ is the effective mass of the electron, k_B is Boltzmann's constant, T_c is the temperature, and $|B'|$ is the magnetic field.