Donor-extended tripodal pyrroles: encapsulation, metellation, and H-bonded tautomers

Citation for published version:

Digital Object Identifier (DOI):
10.1039/c1cc11378j

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemical Communications

Publisher Rights Statement:
Copyright © 2011 by the Royal Society of Chemistry. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Donor-extended tripodal pyrroles: encapsulation, metallation, and H-bonded tautomers **

John S. Hart,¹ Fraser J. White¹ and Jason B. Love¹,*

¹EaStCHEM, School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.

[*] Corresponding author; e-mail: jason.love@ed.ac.uk; fax: +44 (0)131 6504743

[**] We thank the University of Edinburgh and the UK EPSRC for financial support.

Supporting information:
[†] Electronic Supplementary Information (ESI) available: full experimental data and crystal data for CCDC 816434 to 816437. See http://dx.doi.org/10.1039/C1CC11378J

Graphical abstract:

Keywords:
molecular recognition; crystal-structure; water; oxygenation; selectivity; reactivity; receptors; chemistry; oxidation; cavities
Abstract

A tripodal iminopyrrole provides an environment suited to the encapsulation of water through hydrogen-bonding, and the formation of metal complexes by deprotonation and imine-pyrrole tautomerisation.

Main text

The development of ligands that can define both the primary and significantly, the secondary coordination spheres of metals through substrate encapsulation, π-interactions or hydrogen bonding is becoming increasingly important to the design of new catalysts. In part this reflects a deeper appreciation of metalloenzyme chemistry in which it has long been recognised that secondary structure plays a crucial role in enzyme-mediated reactions,\(^1\) and which has led to the burgeoning field of supramolecular catalysis.\(^2\) The addition of hydrogen bonding donor and acceptor appendages to ligands has been shown to change dramatically metal-mediated reaction pathways,\(^3\) and furthermore, encapsulation by the host provides an unusual guest microenvironment that effects the stability of reagents and the efficacy and selectivity of chemical reactions.\(^4\)

We have shown previously that the addition of M\(^{\text{II}}\) halides (M = Fe, Co, Zn) to imine-functionalised dipyrrromethanes resulted in pyrrole-nitrogen metallation with associated imine-pyrrole to amine-azafulvene tautomerisation; this latter aspect formed a new ligand environment that engaged in hydrogen-bonding with ancillary halide and azide ligands.\(^5\) Tautomerisation to form a C\(_3\)-hydrogen-bonding cavity on metallation has also been seen using tripodal aminooxazoline ligands.\(^6\) We report here on the use of the tripodal iminopyrrole H\(_3\)L as a platform for generating an environment for encapsulation, metallation, and hydrogen-bonding interactions. This compound was described previously by Beer and co-workers as a construct in the synthesis of dithiocarbamate cages and pyrrole cryptands,\(^7\) and, furthermore, simple tripodal pyrroles have been shown to exhibit interesting chemistry on metallation.\(^8\)

![Scheme 1](image)

Scheme 1. Reactions of the donor-extended tripodal pyrrole H\(_3\)L. Reagents and conditions: (i) recrystallise CH\(_3\)CN/H\(_2\)O, 92%; (ii) 3 LiN(SiMe\(_3\))\(_2\), THF, 88 % or KH, THF, 90%; (iii) CoCl\(_2\), EtOH, 88 %; (iv) ZnCl\(_2\), MeOH, NEt\(_3\), 26 %.
The pro-ligand H₃L was synthesised according to the literature and was isolated as a crystalline material from hot CH₃CN as the monohydrate H₃L·H₂O (Scheme 1). The X-ray crystal structure of H₃L·H₂O was determined (Fig. 1) and highlights the propensity of the pyrrole and imine groups to act as hydrogen-bond donors and acceptors respectively, resulting in a C₃-symmetric host within which the single guest molecule of water is bound. The structure was best solved with the addition of a disorder component as a result of three-fold rotation at the apical carbon; this resulted in two orientations of each pyrrole-imine arm and overall a relatively poor refinement. The imine C=N bond distance (N2-C7 1.24(2) Å) is indicative of double bonding, and combined with the other pyrrole geometric data suggests that the imine-pyrrole tautomer is retained on water binding. This is reinforced by the ¹H NMR spectrum of H₃L·H₂O in CDCl₃ which displays standard imine and pyrrole resonances and not those associated with the tautomeric form (see later).

Figure 1. Ball and stick (left) and space-filled representations (right) of the X-ray crystal structure of H₃L·H₂O. For clarity, disorder components and all hydrogen atoms except on N1, N3, and N5 are omitted. Selected bond lengths (Å): N1-C3 1.39(2); C3-C4 1.31(5); C4-C5 1.40(7); C5-C6 1.34(4); C6-N1 1.33(4); C6-C7 1.48(3); C7-N2 1.24(2); C8-N2 1.51(3); N1···O1 3.12(2); N2···O1 2.87(2).

The directionality of hydrogen bonding allows water molecules to play important structural and functional roles in enzymatic and biomimetic chemistry, and is a motif that is increasingly being used as a design element in molecular engineering. In our case, it is clear that the presence of water during crystallisation of H₃L has resulted in the orientation of the three arms of the pro-ligand around the water molecule, so forming an unusual, sterically-protected, hydrophilic pocket.

Significantly, host molecules such as calixarenes and open-cage fullerenes normally project a hydrophobic surface to their guest molecules, and the construction of host molecules that incorporate internal polar or hydrogen-bonding sites, sometimes known as inverted molecular capsules, is not straightforward.
Deprotonation reactions between H$_2$L and the strong bases KH and LiN(SiMe$_3$)$_2$ were carried out and led cleanly to the alkali metal complexes M$_3$L (M = K, Li) (Scheme 1).‡ The 1H NMR spectra of both K$_3$L and Li$_3$L in C$_6$D$_6$/THF mixtures support C_3-symmetrical products in solution with resonances at 8.13, 6.53 and 6.15 ppm for K$_3$L consistent with one imine and two pyrrole environments. However, the X-ray crystal structure of Li$_3$L after crystallisation from THF/hexane shows that the new product [Li$_3$(THF)$_3$(LiOH)$_3$(L)]$_2$ had formed, presumably through trace hydrolysis by adventitious amounts of water (Fig. 2). In this structure, the Li cations adopt pseudo-tetrahedral geometries and are found in two coordination environments with Li1, Li2 and Li3 each bound by two pyrrolide nitrogens, a THF oxygen and a OH oxygen. The remaining Li cations Li4, Li5, and Li6 form part of a $\{\text{LiOH}\}_6$ cluster derived from two stacked six-membered Li$_3$O$_3$ rings of chair conformations. Overall, the core structure is best described as a hexameric $\{\text{LiOH}\}_6$ cluster capped on each face by three Li cations. Additional Li-bonding to the imine nitrogens is seen, and results in complete encapsulation of the Li/LiOH core by the organic framework in which the cyclohexyl rings interdigitate. Lithium alkoxides are well known to form similar hexameric structures in which two Li$_3$(OR)$_3$ rings stack in a chair conformation, and Li-capped structures have also been reported.¹² However, [Li$_3$(THF)$_3$(LiOH)$_3$(L)]$_2$ represents the first $\{\text{LiOH}\}_6$ cluster that is triply-capped by Li cations on both hexagonal faces and is presumably stabilised by the encapsulating organic framework.

Figure 2. X-ray crystal structure of [Li$_3$(THF)$_3$L(LiOH)$_3$]$_2$. For clarity, cyclohexyl carbon atoms, disorder components, and all hydrogen atoms except those on O4, O5, and O6 are omitted (50% probability displacement ellipsoids where drawn). Selected bond lengths (Å): Li1-N1 2.069(6); Li1-N3: 2.076(6); Li1-O1 2.058(6) Li1-O6 1.920(5); Li4-N4 2.078(6); Li4-O4’ 2.063(5); Li4-O5 1.928(6); Li4-O6 1.915(6).

While salt elimination reactions between Li$_3$L and transition-metal salts such as ZrCl$_4$ have, as yet, proved inconclusive, the addition of CoCl$_2$ to H$_2$L under aerobic conditions resulted in the formation of the new CoIII complex [Co(H$_2$L)$_2$][Cl]$_3$ (Scheme 1)‡ in which the two ligands bind to the single metal in a
manner similar to tris(pyrzaloyl)borates. The oxidation of CoII to CoIII is supported by the diamagnetic 1H NMR spectrum (Fig S1, ESI), which also suggests that ligand tautomerisation has occurred on mettallation with the appearance of new doublet resonances at 7.45 and 6.89 ppm for the amine-azafulvene conformer. The X-ray crystal structure of [Co(H$_3$L)$_2$][Cl]$_3$ (Fig. 3) confirms that tautomerisation has occurred on mettallation with, in particular, an elongation of N2-C7 (1.290(7) Å) compared to N2-C7 (1.24(2) Å) in H$_3$L·H$_2$O. The cobalt cation adopts octahedral geometry with each H$_3$L ligand facial. The ligand branches are in an anti-conformation and interlock through hydrogen bonding to a total of six chloride anions, three of which arise from extension of the solid state structure.

A similar reaction between ZnCl$_2$ and H$_3$L, in this case in the presence of NEt$_3$, results in the formation of the binuclear zinc complex [Zn$_2$(H$_2$L)$_2$][Cl]$_2$. In the X-ray crystal structure (Fig. 4), the zinc cations are tetrahedral and both coordinated to pyrroline and imine nitrogens of one ligand and to two pyrrole nitrogens of the other, so forming a dimer in which two of the branches of L are tautomerised while the remaining branch is deprotonated; this results in a Zn···Zn separation of 4.245 Å. The partial tautomerisation of L is supported by the differences in N2-C7 (1.327(6) Å) and N4-C18 (1.312(6) Å) bond distances compared to N6-C29 (1.291(6) Å) and also by the hydrogen-bonding interactions between the protons located on N2 and N4 and the chloride anions. Furthermore, the 1H NMR spectrum of [Zn$_2$(H$_2$L)$_2$][Cl]$_2$ (Fig. S2, ESI) shows that the solid state structure is retained in solution, with two distinct sets of resonances in a 2:1 ratio due to two tautomerised pyrrole-imine branches (NH: 10.2 ppm, 3JHH = 15.1 Hz; CH 6.50 ppm) and a single deprotonated branch (pyrrole CH 6.67 and 6.80 ppm, imine CH 8.10 ppm). The ESMS spectrum of [Zn$_2$(H$_2$L)$_2$][Cl]$_2$ displays a peak at m/z 1234 in positive ion mode.
consistent with the molecular ion of the binuclear structure, and fragmentation to the monomeric species Zn(H₂L) at m/z 618, suggesting that the binuclear motif is potentially labile. Linked pyrroles have been seen previously to form binuclear zinc complexes, in particular forming helicates and mesocates, although in contrast to [Zn₂(H₂L)₂][Cl]₂ which has undergone partial tautomerisation, these complexes are unable to partake in secondary interactions.

We have shown that the addition of imine substituents to a tripodal pyrrole results in a versatile platform for both metallation and supramolecular interactions. In particular, the tautomerisation on metallation exhibited here to form hydrogen-bonding appendages is under-utilised in general and represents a potentially wide-ranging method for addressing the secondary coordination sphere in metal complexes.

Figure 4. Ball and stick representation of the crystal structure of [Zn₂(H₂L)₂][Cl]₂. For clarity, disorder components and all hydrogen atoms except those on N2 and N4 are omitted. Selected bond lengths (Å) and angles (°): Zn1- N1 1.977(4); Zn1-N3 1.963(4), Zn1-N5 2.006(4); Zn1-N6 2.063(4); Zn1···Zn2 4.2488(8); N2···Cl1 3.173(4); N4···Cl1 3.198(5) N1-Zn1-N3 96.0(2); N1-Zn1-N5 122.5(2); N1-Zn1-N6 116.1(2); N5-Zn1-N6 83.8(2).
Notes and references

Symtheses and crystal data: H2L Colourless solid in 92 % yield (0.89 g). Analysis. Found: C, 75.99; H, 8.89; N, 15.16% C33H42N4 requires C, 64.41, H, 7.21, N, 15.02%. Single crystals were grown from cooling of a saturated MeCN solution: C33H42N4O2, M 570.4, trigonal R3, a=b=14.6784(2), c=12.8656(2) Å, α=β=90, γ=120°, V 2400.59(6) Å³, 150(2) K, Z=3, 940 independent reflections, R(int) 0.026, R[F² > 2σ(F²)] 0.065, CCDC 816434. [Li3(THF)3(LiOH)2(L1)]2: Colourless crystals grown from slow diffusion of hexane into a saturated THF solution at -20 °C: C106H156Li12N12O13.5O, M 1825.65, monoclinic P2₁/c, a=14.2257(5), b=20.6980(6), c=20.3016(6) Å, β=109.511(4)°, V 5634.4(3) Å³, 150(2) K, Z=2, 13199 independent reflections, R(int) 0.033, R[F² > 2σ(F²)] 0.076, CCDC 816435. [Co(H2L)2][Cl2] Green solid in 45% yield (0.026 g). Single crystals were grown by Et2O diffusion into a saturated MeOH solution: C70H82CoN12Cl4, M 1262.80, monoclinic C2/c, a=31.439(5), b=14.0249(7), c=22.558(4) Å, β=130.79(3)°, V 7531(4) Å³, 150(2) K, Z=4, 6406 independent reflections, R(int) 0.051, R[F² > 2σ(F²)] 0.075, CCDC 816436. [Zn2(H2L)2][Cl2] Colourless solid in 26% yield (0.32 g). Analysis. Found: C, 64.49, H, 7.24, N, 12.72% C70H64Cl2N12Zn2 requires C, 64.41, H, 7.26, N, 12.88% Single crystals were grown from Et2O diffusion into a saturated solution of THF at -25 °C: C76H110N2O2Zn2Cl3, M 1449.42, monoclinic P2₁/c, a=13.6569(4), b=25.0290(8), c=10.9583(4) Å, β=96.887(3)°, V 3718.7(2) Å³, 150(2) K, Z=42, 7361 independent reflections, R(int) 0.101, R[F² > 2σ(F²)] 0.097, CCDC 816437.

