Probabilistic Inference over RFID Streams in Mobile Environments

Citation for published version:

Digital Object Identifier (DOI):
10.1109/ICDE.2009.33

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Data Engineering, 2009. ICDE '09. IEEE 25th International Conference on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Probabilistic Inference over RFID Streams in Mobile Environments

Thanh Tran †, Charles Sutton †, Richard Cocci †, Yanming Nie †, Yanlei Diao †, Prashant Shenoy †

†University of Massachusetts, Amherst ‡University of California, Berkeley

Abstract—Recent innovations in RFID technology are enabling large-scale cost-effective deployments in retail, healthcare, pharmaceuticals and supply chain management. The advent of mobile or handheld readers adds significant new challenges to RFID stream processing due to the inherent reader mobility, increased noise, and incomplete data. In this paper, we address the problem of translating noisy, incomplete raw streams from mobile RFID readers into clean, precise event streams with location information. Specifically, we propose a probabilistic model to capture the mobility of the reader, object dynamics, and noisy readings. Our model can self-calibrate by automatically estimating key parameters from observed data. Based on this model, we employ a sampling-based technique called particle filtering to infer clean, precise information about object locations from raw streams from mobile RFID readers. Since inference based on standard particle filtering is neither scalable nor efficient in our settings, we propose three enhancements—particle factorization, spatial indexing, and belief compression—for scalable inference over large numbers of objects and high-volume streams. Our experiments show that our approach can offer 49% error reduction over a state-of-the-art data cleaning approach such as SMURF while also being scalable and efficient.

I. INTRODUCTION

RFID deployments have become popular in domains such as retail management [13], healthcare [13], pharmaceuticals [13], and library management [9]. RFID applications enable unique identification of every tagged object and provide real-time monitoring and tracking capabilities. While early RFID deployments used fixed, wall-mounted readers, technology advancements have added mobile, handheld readers to the mix, significantly complicating the tasks of stream processing and querying of RFID data. Recent research has adopted general stream query processing to encode application information needs as declarative queries and evaluate these queries over real-time RFID streams [12], [35], [33]. However, raw RFID data, particularly from mobile readers, is unsuitable for direct querying for two reasons:

• Data is incomplete and noisy. Despite technological advances, RFID readings continue to be noisy. Observed read rates in actual deployments are significantly below 100% [17], largely due to the intrinsic sensitivity of radio frequencies (RFs) to environmental factors such as interference from nearby metal objects [10] and contention among tags [11]. Also, it is hard to estimate the data quality in advance, because the read rate depends greatly on the particular characteristics of the deployment. Mobile readers can produce even more noisy data than static readers since they produce readings from arbitrary handheld orientations.

• Observed data reveals data of interest only indirectly. Raw RFID readings only contain tag identities and do not contain additional high-level information such as object locations or containment that are needed by tracking and monitoring applications. If the reader location is fixed and known, then raw readings provide indirect coarse-grained location information for objects. When mobile readers are used instead, their locations vary over time and can be uncertain. Therefore, feeding readings from such readers into a stream processor does not allow a monitoring application to answer even simple queries concerning object locations. For these reasons, RFID data streams, particularly those from mobile readers, are not “readily queriable”. We further note that hardware technology advances are not expected to address this problem for the foreseeable future. This is because RFID technology is inherently designed for identification rather than high-level information such as locationing or containment. Even with multiple closely-spaced wall-mounted readers, the precision of the acquired information is insufficient for tracking and monitoring tasks such as identifying misplaced inventory in retail stores and computing density of flammable objects in each square foot area [13], [35]. Instead, software solutions are needed to enable rich stream query processing for tracking and monitoring and to ultimately realize the promise of mobile RFID technology.

Therefore, in this paper, we address a fundamental data cleaning and transformation problem for mobile RFID data streams, which translates noisy, raw data streams from mobile RFID readers into clean, precise queriable event streams with location information. Informed by the demand of subsequent stream query processing, our work aims to meet three objectives: (i) high precision results of data cleaning and transformation, which are able to simplify probabilistic query processing as shown in [28], (ii) producing such results at stream speed, (iii) scaling this process for large tracking and monitoring environments.

Recent research on RFID data cleaning [12], [17] has proposed building an abstraction of device data appropriate for further query processing. This approach focuses on the simpler problem of whether an object is in the (large) read range of a static reader. These smoothing techniques, when applied to mobile readers, provide information such as location only with limited precision, as we shall show in the performance analysis of this paper. The RFID data transformation component of [28] generates low resolution location data, such as a person in a particular office, which is inadequate for many tracking and monitoring tasks as mentioned above. Moreover, both of these
studies consider at most one hundred RFID-tagged objects and lack scalable solutions for large-scale environments such as typical warehouses.

In this paper, we present a novel approach for efficient, scalable cleaning and transformation of mobile RFID data streams while offering high precision results. Our approach is based on the view that applications want to query against facts about the true state of the physical world, but these facts are revealed only indirectly through a sensing process that, even for the data that can be generated, is lossy and noisy. The task of data cleaning and transformation is essentially to recover the facts necessary for query processing while mitigating the effects of data loss and sensing noise. Toward this goal, we employ a principled probabilistic approach to (1) model precisely how mobile RFID data is generated from those facts about the physical world and (2) infer likely estimates of the facts as noisy, raw data streams arrive.

While probabilistic inference is a well-established research area, applying it to clean and transform RFID data streams while meeting the three aforementioned objectives, namely, high precision, stream speed, and scalability, pose considerable challenges. By way of addressing these challenges, we make the following contributions:

Modeling the data generation process (§III). First, we design a probabilistic model that captures the underlying data generation process, including the key components such as reader motion, object dynamics, and noisy sensing of these objects by the reader. In particular, our model employs a flexible parametric RFID sensor model that can be automatically and accurately configured for a variety of environments using a standard learning technique. In contrast, existing projects resort to manual calibration of the sensor model for each RFID deployment environment [16], [9], [17], precisely because they lacked such a flexible parametric sensor model.

Efficient, scalable inference (IV). To generate clean location event streams from noisy, raw RFID data streams, we apply a sampling-based inference technique, called particle filtering, to the probability distribution developed above. Unfortunately, this technique requires a prohibitively large number of samples to cope with the number of objects typical in our target environment, hence inadequate for stream processing. Our second contribution is to enhance particle filtering to scale to large numbers of objects and keep up with high-volume streams while offering high precision inference results. To do so, we develop three advanced techniques, namely, particle factorization, spatial indexing, and belief compression. These techniques lead to a solution that uses only a small number of samples at any instant by focusing on a subset of the objects, while maintaining high inference accuracy.

Prototyping and evaluation (§V). Our third contribution is a prototype implementation and detailed performance evaluation of our system for translating mobile RFID data streams into clean, precise event streams with location information. Our results of running a location update query over both real-world traces and large-scale synthetic data show that (1) with an automatically and accurately configured model, our approach estimates object locations with high accuracy, e.g.,

with a range of a few inches, (2) our approach offers an average of 49% error reduction over SMURF, a state-of-the-art RFID data cleaning technique [17], for mobile RFID data, (3) our system is robust to noise in both observed tags and observed reader locations, and (4) our system is the first to scale to tens of thousands of objects with small memory usage and at a constant rate of over 1500 readings per second, which has reached the maximum rate at which an RFID reader can produce readings. In contrast, naïve particle filtering can process only 0.1 reading per second when given 20 objects while striving to achieve comparable accuracy.

II. PROBLEM STATEMENT

In this section, we present our problem formulation and illustrate how this enables rich stream query processing.

A. Problem Statement

Given a stream of raw readings of RFID tags and a sequence of reader locations, both of which can be noisy, we wish to derive a clean, precise and queriable event stream where RFID tag observations are augmented with the locations of the corresponding objects. This high-level problem can be further described using the underlying physical world, the data streams from a mobile reader, and the desired output stream.

The Physical World. The physical world being monitored is a large storage area comprising shelves \(S \) and a set of objects \(O \). Both shelves and objects are affixed with RFID tags. Since the shelves are at fixed locations, we assume that the precise locations of their tags are also known a priori. However, the object locations are unknown and must be determined as part of the cleaning and transformation process. Typically, objects stay on the same shelf but can sometimes move from one shelf to another. The facts of interest to the application are the \((x, y, z)\) location of each object \(O_i \) at each time instant \(t \).

A mobile RFID reader provides the only means to observe the physical world. Mobile readers come in two flavors—handheld readers that are used by humans to scan and monitor tagged objects (e.g., on store shelves), and readers that be mounted on robots for automated monitoring and order processing (e.g., Kiva systems [19]). The mobile reader periodically scans the storage area. In each round, the reader produces readings that contain the tag ids of observed objects (usually a subset of \(O \)) and tag ids of observed shelves (also a subset of \(S \)). In addition, the \((x, y, z)\) location of the reader itself at time \(t \) can be computed using a positioning technology such as indoor GPS or ultrasound [31].

Data Streams from Mobile Readers. Various readings from a mobile reader have the following characteristics:

No Information about object locations. Since an RFID stream only consists of a sequence of tag ids and observation times, the locations of objects are not observed directly.

Noisy object readings. Object readings are highly noisy. First, if an object is on the boundary of the sensing area, in the so-called minor detection range, the read rate is far less than the maximum rate at which an RFID reader can produce readings. In contrast, naïve particle filtering can process only 0.1 reading per second when given 20 objects while striving to achieve comparable accuracy.

1 In this work, we assume that the facts of interest to the monitoring application only consist of object locations. The extension to also include inter-object relationships is a main task of our future work.
than 100%. Even if the object is close to the reader, in the so-called major detection range, objects can be missed due to environment factors such as occluding metal objects and contention among tags. Objects can also be read unexpectedly due to reflection of radio waves by obstructing objects. Finally, mobile readers have lower read rates than fixed readers because they tend to read objects from arbitrary orientations, and certain orientations can result in poor read rates.

Uncertainty in reader locations. The exact reader location is usually uncertain. For example, even when handheld readers are coupled with indoor positioning systems such as ultrasound locationing, the reported locations are imprecise (e.g., accuracy is about tens of centimeters for moving objects [31]). As another example, a robotic reader can measure its location using dead reckoning, essentially by counting the number of times that its wheels have revolved. But such location estimates may contain significant noise because the robot can drift sideways due to inertia or forward due to wheel slippage, as we observed in our lab deployment (detailed in §V-C).

While the exact data format varies with the reader, in this work we assume that readings are produced in two separate streams: the RFID reading stream has readings \((\text{time}, \text{tag} _\text{id} _\text{of} _\text{object} _O, \text{or tag} _\text{id} _\text{of} _\text{shelf} _S)\) and the reader location stream has reports \((\text{time}, \{x, y, z\})\). In practice, these streams may be slightly out-of-sync in time. In our model, however, a time step (also called an epoch) is fairly coarse-grained, e.g., a second. This allows us to generate synchronized streams via simple low-level processing, such as assigning the same time to RFID readings produced in one epoch and taking average of multiple location updates in an epoch to produce a single update. Therefore, we consider only synchronized streams in the rest of the paper.

Output Event Stream. Our goal is to translate noisy, primitive data streams from a mobile RFID reader into clean, precise event streams with location information. In the output stream, each event reports the location of an object as follows: \((\text{time}, \text{tag} _\text{id} _\text{of} _\text{object} _O, \{x, y, z\} _\text{of} _O, \{\text{statistics}\})\). Events are output for not only observed objects but also objects with missed readings. In other words, the output stream not only augments the input streams with object locations but also mitigates the effect of missed readings. In addition, the optional statistics field can be used to report summary information of the estimated location distribution, such as its variance or confidence regions.

Finally note that as the reader moves, it may observe an object several times from different locations. Combining such multiple readings provides valuable information about the object location. To avoid fluctuating values in the output, our system outputs an event for an object only at particular points: for example, within \(x\) seconds after an object was read, upon completion of a shelf scan, or upon completion of a full area scan. The choice of when to output reports is left to the discretion of the application.

B. Support for Stream Query Processing

We next illustrate the rich stream query processing that our event stream enables but raw streams from mobile RFID readers do not. We write our example queries in the CQL stream query language [1]. The first query reports the location change of each object. It simply reads the event stream, considers the most recent location report of each object, and if the location differs from the previous one, outputs the tag id and the new location of the object.

```sql
SELECT Istream(E.tag_id, E.{x, y, z})
FROM EventStream E (Partition By tag_id Row 1)
```

The second query detects potential violations of a fire code: display of solid merchandise shall not exceed 200 pounds per square foot of shelf area.

```sql
SELECT Rstream(E2.area, sum(E2.weight))
FROM (SELECT Rstream(*,
    SquareFtArea(E.{x, y, z}) As area,
    Weight(E.tag_id) As weight)
    FROM EventStream E [Now])
E2 [Range 5 seconds]
GROUP By E2.area
HAVING sum(E2.weight) > 200 pounds
```

The nested Select-From query simply adds two attributes to each event: the square foot area that each object belongs to, computed by a function on its \((x, y, z)\) location, and the weight of the object, retrieved by another function using its tag id. Then the outer query considers events in each 5 second window, groups them based on the square foot area, computes the total weight of the objects in each group. For the groups with the total weight greater than 200 pounds, it reports the area and the total weight in output.

Crucially, both of these queries require reliable knowledge of the object location, which is unavailable without processing and transforming the raw data streams.

III. A Probabilistic Data Generation Model

In this section, we present a probabilistic model that captures how raw data streams are generated by a mobile RFID reader from the true state of the world. Given the complexity of the problem, our model incorporates the motion of the reader, the object dynamics, and most importantly, the noisy sensing of objects and reader locations.

Formally, the world is modeled as a vector of **random variables**, which are represented as nodes in Figure 1. There are two types of variables: **evidence variables** that we observe in the data, and **hidden variables** that we wish to infer from the information contained in the evidence. In our application, the hidden variables are the true reader location \(R_t\) and the object locations \(O_{ij}\), which are represented by the unshaded nodes in Figure 1. The evidence variables are the reported reader location \(R_t\) and the object readings \(O_{ij}\), which are indicated by the shaded nodes in Figure 1. (For definitions of all the notation used in this section, see Table I.)

The goal of this section will be to define a joint probability distribution \(p(R, O, \hat{R}, \hat{O})\) over both hidden and observed variables. Then, given observed values \(R\) and \(O\), this joint model induces a conditional distribution \(p(R|O|\hat{R}, \hat{O})\) over the true locations, which can be used to predict the objects’ locations. We describe various components of our model in Section III-A, how we combine them into a single joint
sensor model represent the sensing region as the likelihood of reading a reader is less than 100%, it is natural to model the reader’s distance and angle. Given the true location describes how the read rate of an RFID reader decays with specifics of the deployment environment.

Since the sensor noise varies with time and based on the factors including the distance and angle tag.

TABLE I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_i</td>
<td>True location of shelf tag i</td>
</tr>
<tr>
<td>S_{ti}</td>
<td>Binary variable indicating whether shelf tag i is observed at time t</td>
</tr>
<tr>
<td>O</td>
<td>Matrix of all observed reader locations at all time steps</td>
</tr>
<tr>
<td>O_{ti}</td>
<td>Binary variable indicating whether object i is observed at time t</td>
</tr>
<tr>
<td>R</td>
<td>Matrix of all true object locations at all time steps</td>
</tr>
<tr>
<td>R_{ti}</td>
<td>True location of object i at time t. Vector containing (x, y, z) position.</td>
</tr>
<tr>
<td>$O^\hat{}$</td>
<td>Matrix of all observed reader locations at all time steps</td>
</tr>
<tr>
<td>$O^\hat{}_{ti}$</td>
<td>Binary variable indicating whether shelf tag i is observed at time t</td>
</tr>
</tbody>
</table>

Our joint model over the entire world is divided into four components that separately model different aspects of the distribution in Section III-B, and how we estimate model parameters in Section III-C.

A. Components of the Model

Our joint model over the entire world is divided into four components that separately model different aspects of the domain. We explain each of the components in detail below.

RFID sensor model: Given that the read rate of an RFID reader is less than 100%, it is natural to model the reader’s sensing region in a probabilistic manner: each point in the sensing region has a non-zero probability that represents the likelihood of an object being read at that location. To determine the probabilistic values for different points, we can represent the sensing region as the likelihood of reading a tag based on the factors including the distance and angle to the reader. Since the sensor noise varies with time and location, it is also possible to introduce other parameters into the likelihood, and estimate those parameters based on the specifics of the deployment environment.

Formally, we introduce a flexible parametric model that describes how the read rate of an RFID reader decays with distance and angle. Given the true location R_t of the reader and O_{ti} of the object i, the sensor model is a conditional distribution $p(O_{ti}|O_{ti}, R_t)$ that models the probability of reading the tag. If we denote the reader location by the vector $[r_1^T, r_2^T, r_3^T]$, and the reader angle in relation to the reference coordinate frame by r_4^T, then we can compute the distance d_{ti} and the angle δ_{ti} between the reader and the tag as follows:

$$\delta = O_{ti} - [r_1^T, r_2^T, r_3^T]$$

$$d_{ti} = \sqrt{\delta^T \delta}$$

$$\cos \theta_{ti} = \frac{\delta^T [\cos r_4^T, \sin r_4^T]}{d_{ti}}$$

Empirically, we have found that the read rate decreases approximately quadratically with distance and with angle, so that the probability can be written as a function like $\sum_{c=1}^{2} a_c (d_{ci})^2 + \sum_{b=1}^{2} b_c (\theta_{cb})^2$, where the $\{a_c\}$ and $\{b_c\}$ are coefficients that we expect to be negative. But strictly speaking this quadratic function cannot be a probability distribution, because it is not restricted to $[0, 1]$. To fix this, we compose the quadratic function with the sigmoid function $f(x) = 1/(1 + \exp(-x))$, which has the effect of squashing a real number into the interval $(0, 1)$. This transformation yields the logistic regression model, which is a standard technique for probabilistic binary classification from the statistics literature. Putting this together, the sensor model is:

$$p(O_{ti} = 0 | d_{ti}, \theta_{ti}) = \frac{1}{1 + \exp(\sum_{c=1}^{2} a_c (d_{ci})^2 + \sum_{b=1}^{2} b_c (\theta_{cb})^2)}.$$

The coefficients a_c and b_c are real-valued model parameters that are learned from data in a calibration step, discussed in Section III-C. We use the same sensor model for both the object tags and the shelf tags. The only difference is that for the shelf tags, we write the distribution as $p(S_i = 0 | d_{ti}, \theta_{ti})$, but the same model and coefficients are used in both cases.

As our results in Section V show, our sensor model is a flexible parametric form that can fit a variety of sensing regions, including conical and spherical regions (examples of learned sensor models are shown in Figure 5(b)-5(d)).

Reader motion model: This model describes how the reader moves. We assume that the reader moves with a constant velocity that varies somewhat over time. In other words, the new location is the old location plus a noisy version of the average velocity. Formally, the new location R_{t+1} can be computed from the old location as $R_t = R_{t-1} + \Delta + \epsilon$, where Δ is the average velocity of the reader, and ϵ is the noise. The motion noise ϵ is a Gaussian random variable with mean 0 and diagonal covariance matrix Σ_m.

Reader location sensing model: This model describes the noise in our observations of the reader’s location. For example, an RFID-equipped robot may compute its location by dead reckoning, that is, basically by counting how many times its wheels have revolved. We assume that this measurement noise is Gaussian with mean μ_r and covariance Σ_r. A more complex noise model is not necessary here, because errors in the reader location can be corrected by information from the static shelf tags as shown in our experiments in Section V.

Object location model: Objects in a warehouse are assumed to be stationary but can occasionally change locations; the object location can change with a probability α at each
time t, in which case the new location is distributed uniformly across all shelves. We write this model as a conditional distribution $p(O_{ti}|O_{t-1,i})$. This model contains no distinguishing information about the object’s new location, but such information is not needed: The object location model is used to temporarily create samples that will be weighted based on the actual observations in the inference process; the new object location will be eventually inferred from the readings from that location (details of this process are given in Section IV-A).

B. Formal Definition

Now we describe how the component models can be combined to define a joint model over the entire domain. By way of illustration, we first describe how the data would be generated if the world behaved according to our model: Assume that the initial reader location R_1 is known. Sample initial object locations O_1 from a uniform distribution over the shelf. Then for each time step t, perform the following five steps. (1) Generate the new reader location R_t from the previous location R_{t-1} by sampling from the reader motion model $p(R_t|R_{t-1})$. (2) Generate a noisy observation \hat{R}_t of the reader location from the reader location sensing model $p(\hat{R}_t|R_t)$. (3) Generate new object locations O_t from the object location model $p(O_t|O_{t-1})$. (4) Decide whether each object is observed using the sensor model. Each object i is observed with probability $p(\hat{O}_{ti}|R_t, O_{ti})$. (5) Decide whether each shelf tag is observed using the sensor model. Each shelf tag i is observed with probability $p(\hat{S}_{ti}|R_t, S_i)$.

Now we give the formal description of our model. Any distribution that can be sampled in the manner above can be factorized into the product of its local probability distributions:

$$p(R, R, O, \hat{O}|S) = p(R_1, O_1) \prod_t p(R_t|R_{t-1})p(R_t|R_t)$$

$$\times \prod_{i \in O} p(O_{ti}|O_{t-1,i})p(\hat{O}_{ti}|R_t, O_{ti}) \times \prod_{i \in S} p(\hat{S}_{ti}|R_t, S_t).$$

The factorization of (2) can be depicted as a directed acyclic graph called a directed graphical model or a Bayesian network, as shown in Figure 1. Our model is a particular case of a dynamic Bayesian network (DBN) [24], but with conditional probability functions specially designed for our problem.

C. Parameter Estimation using Learning

We next describe the self-calibration step in which we estimate the model parameters from data. The parameters of our model are the coefficients $\{a_c\} \cup \{b_c\}$ of the sensor model, the average reader velocity Δ, the variance Σ_m of the reader velocity, and the mean μ_s and variance Σ_s of the noise in reader location sensing. The sensor model in particular depends not only on the type of reader used, but also on the specifics of the environment such as metal objects and density of tags. One way to calibrate the sensor model is to perform calibration in the lab [16], [9], [17], in which the read rate is measured when a reader and an RFID tag are placed at various known distances and angles. Such manual lab calibration is not only tedious but also inaccurate in real deployments due to the change of environmental factors in those deployments.

An important benefit of having a flexible parametric model is that we can automatically learn the model parameters using a small training data set collected from the same environment in which the system is to be fielded. The training data includes the observed reader locations and readings of a small set of tags, some of which are shelf tags with known locations. We perform parameter estimation using Expectation-Maximization (EM), a standard method for parameter estimation in the presence of hidden variables. In Section V, we show that only a small number of shelf tags (e.g., less than 20) are needed to learn accurate sensor models.

IV. Efficient, Scalable Inference over Streams

As noisy, raw data streams emanate from a mobile RFID reader, the task of translating them into a clean, precise event stream with location information is treated as an inference process in our work. Inference is essentially to estimate the true locations of objects for each time t even if there are no readings returned for some of the objects. Formally speaking, from the joint distribution $p(R, O, \hat{R}, \hat{O})$ defined previously over both the physical world and noisy readings, inference is to compute the conditional distribution $p(R, O|\hat{R}, \hat{O})$. This conditional distribution can be used to predict true object locations and optionally the true reader location.

Exact inference for our model is very challenging, because the true conditional distribution has a complex shape. Instead, we sample from the distribution approximately using a generic machine learning algorithm called particle filtering. How to apply particle filtering to our particular problem is described in Section IV-A. However, a naive implementation of particle filtering does not scale to the enormous number of objects that would be expected in a real warehouse. To handle this, we augment the basic algorithm in three novel ways:

- We first propose an advanced technique, particle factorization, to reduce the number of samples needed for accurate inference for a large number of objects (Section IV-B).
- We then augment the factorized particle filter with spatial indexing structures to limit the set of objects that are actually processed at each time step (Section IV-C).
- At some point in inference, the samples for an object may stabilize in a small region. In this case, we compress the sample representation of the object location into a parametric distribution to save both space and time (Section IV-D).

A. Particle Filtering

In this section, we describe the main intuitions behind sampling-based inference for our problem. We also give a formal description of how the generic particle filtering algorithm [8] is applied to our particular probability distribution, which provides a technical context for our later extensions.

The basic idea is to maintain a weighted list of samples, each of which contains a hypothesis about the true location of each object as well as a hypothesis about the true reader location. Each sample has an associated weight, representing the likelihood of the sample being true. The weight of a sample is assigned based on the following intuitions.
As Figure 2(a) shows, if a reader detects the tag of object O once, the tag must be in the vicinity of the reader. We can generate multiple samples about the tag location in the reader's sensing region (or a slightly larger area) but cannot further distinguish these samples. However, if the reader detects the tag again from a nearby position, then the samples that reside in the intersection of the sensing regions at the two reader positions will be assigned higher weights (Figure 2(b)). Regarding the reader location, samples are weighted based on the likelihood of seeing all observed objects from that location. Of particular importance are the shelf tags with known locations. As Figure 2(c) shows, an observed shelf tag S can be used to distinguish good samples of the reader location, from which the reader can detect the shelf tag, from those bad samples of the reader location, from which the reader cannot.

At the next time step, these samples are updated to reflect expected changes of reader and object locations. Their weights are adjusted based on the new observations from that step. At any point, we can use this weighted list of samples as a distribution over the hidden variables, i.e., the true object locations and reader location, given the observations—exactly the result that inference aims to compute.

Formally, we denote a set of samples (termed particles in the literature) at time t using $x^{(1)}_t, \ldots, x^{(J)}_t$. We denote the j-th particle by a vector $x^{(j)}_t = (R^{(j)}_t, O^{(j)}_{t-1}, \ldots, O^{(j)}_0)$, where $R^{(j)}_t$ is a hypothesis about the reader location and $O^{(j)}_i$ is a hypothesis about an object location. Let the weight of $x^{(j)}_t$ be $w^{(j)}_t$. The particle filtering algorithm in our application is:

1. **Initialization**. Generate a set of initial particles $\{x^{(j)}_1\}^{J}_{j=1}$ from the prior distribution $p(R_1, O_1)$.

2. **Update**. Let the vector y_t contain all of the observations at time t. Then for each time step t:
 - **Sampling**. For each particle $x^{(j)}_{t-1}$, generate a new particle $x^{(j)}_t$ from a proposal distribution $q(x_t | x^{(j)}_{t-1}, y_t)$. The proposal distribution is an arbitrary distribution chosen to be easy to sample from. In this work, we use the reader motion model and object location model for sampling.
 - **Weighting**. Compute a new particle weight $w^{(j)}_t = Cw^{(j)}_{t-1} \cdot \frac{p(x^{(j)}_t | x^{(j)}_{t-1}, y_t)}{q(x^{(j)}_t | x^{(j)}_{t-1}, y_t)}$,

where C is a constant with respect to j, chosen so that $\sum_j w^{(j)}_t = 1$. This weight adjusts for the fact that the particles were sampled from the proposal distribution, rather than the true distribution of the model.
 - **Resample** from the particles to reproduce the highest-weight ones. Each of the new particles is selected by sampling from the set of old particles with replacement.

A particle is selected with probability equal to its weight.

3. **Inference output**. At any time step, the posterior distribution over the hidden variables can be estimated by a weighted average of the particles. More formally,

$$ p(O_{t:t} | R_{1:t}, O_{1:t-1}) \approx \sum_{j=1}^J w^{(j)}_t \cdot 1_{\{O_{t:t} \approx O^{(j)}_{t:t}\}} $$

where $1_{\{a=b\}}$ is an indicator function that is 1 if and only if $a = b$. A similar formula is used for the reader location. From these distributions, it is easy to compute any desired statistics, such as the mean, the variance, or a confidence region.

Sensible initialization of the particles is also important, because otherwise many samples will begin far away from the object’s actual location. In this work, we create new particles for an object when we see it the first time or at a location far away from the previous location of observing it. At the current location, we initialize the particle locations from a uniform distribution over a cone originating at the reader location. The width of the cone of initialization is chosen to be an overestimate of the true range of the reader. We call this initialization sensor-model based initialization.

A subtlety arises when an object is detected in a new location not far from the previous location. This can result from object movement within a small area (e.g., shuffling on a shelf) or erroneous readings due to the reflection of radio waves by a metal object. If the distance between the old and new locations is very small, we just use the existing particles and weight them as before. If the distance is significant, we keep half of the old particles and “move” the other half by initializing them at the new location. This way, the particles will spread out, but over time weighting and resampling will favor the particles close to the object’s true location.

B. Particle Factorization

So far every particle has included a sample of the locations of all objects. To get good accuracy, intuitively we expect to use a large number of particles in the number of objects (which was observed in our experiments presented in Section V-D). This is because even if a particle contains good location estimates for some objects, it may contain bad locations for other objects, simply through random chance in the sampling procedure. Figure 3(a) illustrates an example of this: Particle A (the dark stars) contains a good sampled location for Object 1 but not for Object 2. On the other hand, particle B (the light stars) contains a good sampled location for Object 2 but not Object 1. As the number of objects grows, it becomes more likely that most particles will happen to have sampled a bad location for some object. One way to overcome this problem is simply to use more particles, but this becomes prohibitively expensive when there are large numbers of objects.

In this section, we describe an advanced technique that enables the particle filter to scale dramatically in the number of objects. In this technique, called particle factorization, we break a large particle over all the objects into smaller particles over individual objects. This allows us to combine good particles from different objects and, essentially, to represent
an exponentially large number of unfactored particles in the
amount of space linear in the number of objects. The challenge
is to ensure that the operations required by the particle filter
can still be performed in this factored representation.

First we explain the data structures that we use to maintain
these factored particles. As shown in Figure 3(b), we maintain
a list of reader particles, each of which contains a hypothesis
about the reader location and an associated weight. Each
object particle contains a hypothesis of the object location
about the reader location and an associated weight. Each
particle can still be performed in this factored representation.

In addition to maintaining factorized weights, we also
maintain factorized weights. Each reader particle $R_t^{(j)}$ has an
associated weight $w_{rt}^{(j)}$. The reader particle also has a list of
associated object particles $O_{ti}^{(j,1)} \ldots O_{ti}^{(j,K)}$ for each object
i. Each of these object particles has a weight $w_{ti}^{(j,k)}$. The
semantics of the factored weights is: If we were to expand
the factored representation into the exponentially-long list of
unfactored particles, then the weight of the unfactored particle
is the factored reader weight times all of the factored object
weights. In our factorized particle filter presented in the rest
of this section, we manipulate these weights without actually
constructing unfactored particles.

Now we explain how these data structures can be used to
efficiently implement the factorized particle filter. First,
the sampling step can be performed entirely on the factored
representation. To sample from the proposal distribution,
for each reader particle, we sample a new reader location from
the reader motion model, and then for each associated object
particle, we sample its location from the object location model.

Second, the weights of the new particles can also be
computed in a factored manner. The important point is that
in the factored representation, the weight of a particle for
object i does not depend on weights of particles for any other
objects. To compute the new weights, the new incremental
weight for each reader particle $w_{rt}^{(j)}$ can be computed as
$p(R_t | R_t^{(j)}) \prod_{i \in S} p(S_{ti} | R_t^{(j)}, S_i)$. The new incremental weight
for an object particle $O_{ti}^{(j,k)}$ is $p(\hat{O}_{ti} | R_t^{(j)}, O_{ti}^{(j)})$.

It can be shown that this weighting step is equivalent to
the standard particle filtering weight step applied to the
full set of unfactored particles. Mathematically, this is because
our proposal distribution and our model factorize in the same way
as our data structures do. To see this, consider the weight
update (3) for unfactored particles:

$$w_{t}^{(j)} = Cw_{t-1}^{(j)} p(R_t^{(j)}, O_{t-1}^{(j)}, \hat{R}_{t-1}, \hat{O}_{t-1})$$

$$= Cw_{t-1}^{(j)} \frac{p(\hat{R}_t | R_t^{(j)}) p(R_t^{(j)}, O_{t-1}^{(j)}, \hat{R}_{t-1}, \hat{O}_{t-1})}{q(R_t^{(j)}, O_{t-1}^{(j)}, R_{t-1}^{(j)}, \hat{R}_{t-1}, \hat{O}_{t-1})}$$

$$= Cw_{t-1}^{(j)} \cdot w_{rt}^{(j)} \prod_{i \in S} p(S_{ti} | R_t^{(j)}, S_i) \prod_{i \in S} p(\hat{O}_{ti} | R_t^{(j)}, O_{ti}^{(j)})$$

where in the second line, we substitute definitions; and in
the last line we simply define $w_{rt}^{(j)}$ and $w_{ti}^{(j)}$ to be
the corresponding terms from the previous equation. This equation
shows that that the weights can be computed separately for
each object, with the same result as if the weight had been
computed for the exponential number of unfactored particles
that is implicit in our representation.

Finally, performing resampling in this representation is a non-trivial task. For the object particles, we resample them in
the usual way while ensuring that their pointers to the
associated reader locations are preserved. On the other hand,
when we resample reader locations, we instrument resampling
to favor reader particles that are associated with good object
particles. Details of the resampling algorithm are omitted
due to space limitations (but are available in [32]).

Our factorization scheme is related to that of [25], but
the main difference is that the previous work avoids the issue
of factorized weights by resampling at every time step. In
contrast, by maintaining factorized weights, our method avoids
the cost of resampling at most time steps.

C. Spatial Indexing

Even with factored particles, the inference algorithm presented
so far must process all the objects in the world at
every time step. This is because the weighting step described
in Section IV-A is performed for all objects, whether their
tags were read or not. In this section, we introduce spatial
indexing as a further approximation that dramatically reduces
the processing cost. It is important to note that spatial indexing
is possible only after the particles have already been factorized.

The main insight is that even if the number of objects is
large, only a much smaller number of them are near the reader
at any given time. If we can restrict the processing to only
those objects near the reader, a significant amount of work
can be saved. This intuition is more precisely described by
the diagram in Figure 4(a), which classifies objects based on
their distance from the reader location at time t (x axis),
and the result of RFID sensing at t (y axis). There are four cases:

Case 1: If an object is read at time t, no matter how far it is
from the reader, it should be processed in inference.

Case 2: If an object is not read at t but was read before near
the current reader location, the object needs to be processed
so that the particle filter can downweight the particles of the
object that are very close to the current reader location.

Case 3: If an object is near the reader but has never been
detected from its current location, it is simply invisible to the
Per-object based compression. We first describe how an object’s particles can be compressed. Suppose that a weighted set of particles over the location of object \(i \) defines a distribution \(\tilde{p}(O_{t, i}) \) as in (4), and we wish to compress this into a Gaussian \(q(O_{t, i}) \) with mean \(\mu \) and covariance matrix \(\Sigma \). This can be done by minimizing the KL divergence \(KL[\tilde{p} \mid q] \), which is a standard measure of “distance" between distributions. When \(q \) is Gaussian, the KL amounts essentially to a weighted average of the squared distance between \(\mu \) and the particles comprising \(\tilde{p} \). It can be shown that the optimal choice of \(q \) uses the sample mean and empirical covariance matrix, that is,

\[
\mu = \frac{1}{N} \sum_{i=1}^{N} p_{t, i} \quad \text{and} \quad \Sigma = \frac{1}{N} \sum_{i=1}^{N} (O_{t, i} - \mu)(O_{t, i} - \mu)^T
\]

The KL divergence at these parameters measures how much is lost by compression, in the sense of the expected squared error (e.g., in squared feet) of the resulting Gaussian.

Several methods are possible for choosing individual objects to compress. One possibility is to compress an object whenever its tag has not been read for several time steps. This is applicable if an object leaving the read range means that it will not be observed for a long time. An alternative method is to rank the uncompressed objects by the KL of the compressed representation, and compress the objects that would have the least compression error. This method can be further augmented with a threshold. That is, we only compress the particle representation if the KL is below the threshold.

Decompression (sampling) and re-compression. Later on, when a compressed object has its tag read again, we need to perform the particle filtering steps on the compressed representation. To do this, we sample a small number of particles from the Gaussian to decompress the representation. Empirically, we find that many fewer particles are required for accurate inference after decompression than for the original particle filter, because the compressed representation tends to be well-behaved. When the object leaves scope, if its particles are still well-represented by a Gaussian, it can be re-compressed.

A final note is that if the beliefs for all objects are compressed, then our technique is an instance of the Boyen-Koller algorithm [3]. However, by employing compression only for selected objects, our technique can combine the benefits of the Gaussian and particle-based representations.

D. Belief Compression

We next present a compression technique that can be embedded in our factorized particle filter to further reduce space consumption and improve inference speed. Recall that a weighted set of particles for each object defines a distribution over the object’s location. The main advantage of the particle representation is the ability to represent arbitrary distributions. For example, when an object is first detected, its location could be anywhere within a large and oddly-shaped area. But as more readings arrive, often the location particles stabilize to a small region. If this occurs, the object location could be represented much more compactly by a parametric distribution. For example, the particle-based representation may require 1000 particles, but a three-dimension Gaussian requires only 9 real numbers to store its parameters. Therefore, compression to the parametric distribution saves considerable space. Compression can also save time as it often allows inference to use fewer particles on the compressed representation.

V. PERFORMANCE EVALUATION

We have implemented all of our inference techniques in a prototype system in Java. In this section, we present a detailed analysis of our system using both real traces from mobile RFID readers and large-scale synthetic data. Our results show that our system can (1) offer clean event streams with accurate location information (e.g., within a range of a few inches) and is robust to noise; (2) offer significant error reduction (e.g., an average of 49%) over SMURF [17], a state-of-the-art RFID data cleaning technique; (3) scale to tens of thousands of objects at a constant rate of over 1500 readings per second, while naive particle filtering cannot scale beyond 20 objects.

A. Experimental Setup

Query. In all experiments, we ran the location update query described in Section II over the event stream generated by
our system. Recall that this query examines the most recent event of each object, and if the location in this event differs from the previous event, outputs the tag id and new object location. As noted in Section II, to avoid fluctuating values in output, our system produced a location event 60 seconds after an object came into the scope of the reader during the current scan (although inference was running in real-time).

Metrics. The accuracy of query output was measured using inference error, which is the average distance between reported object locations and true object locations. The performance metric is the average time that our system takes to process each RFID reading, indicating our system throughput.

Simulator. To obtain early insight into factors on performance and perform scalability tests, we developed a simulator for a warehouse scenario that produces synthetic RFID streams with various controlled properties. The simulated warehouse consists of consecutive shelves aligned on the y axis, with objects evenly spaced on the shelves. Both shelves and objects are affixed with RFID tags. For simplicity, we assume the same height for all tags and hence ignore the z axis. An RFID reader is mounted on a robot that moves down the y axis facing the shelves. In every epoch, it travels about 0.1 foot (which can be varied), stops, senses its current location and reads objects on the current shelf with added noise, and sends both its sensed location and the RFID readings to our system.

RFID readings were generated using a cone-shaped sensor model as shown in Fig. 5(a) (where white is for high read rates). The sensor model has a 30 degree open angle along the x axis for the major detection range that has a uniform read rate, RR_{major}, and an additional 15 degree angle for the minor detection range whose read rate degrades from RR_{major} down to 0. The parameters for data generation include: (1) RR_{major}, by default 100%, (2) read frequency RF, by default once every second, (3) the Gaussian model for reader motion, by default $\mu_m=0$, $\sigma_m=0.01$ for both x and y dimensions, and (4) the Gaussian model for reader location sensing, by default $\mu_y=0$, $\sigma_m=0.01$ for both x and y. Each trace contains readings from a single pass of scan of all the tags unless stated otherwise.

B. Model Calibration and Initial System Evaluation

In the section, we evaluate our system for its ability to calibrate the probabilistic model based on the characteristics of an RFID deployment, and test its sensitivity to various factors. As a baseline, we also ran a method called uniform that uniformly randomly samples an object’s location over the overlapping area of the sensor model and the shelf. This baseline is used as a bound on the worse-case inference error. We used simulation in this set of experiments.

Learning RFID sensor model. As noted in Section III-A, the most challenging part of modeling is the sensor model because it varies with the type of reader, environmental noise, etc. To evaluate our probabilistic sensor model, we used a small trace containing readings of 20 tags to learn the model using EM. To investigate the amount of information needed for learning, we varied the number of tags with known locations, assumed to be shelf tags, from 0 to 20. When fewer than 20 tags were used as shelf tags, the rest of the tags were treated as object tags whose true locations are unknown.

Fig. 5(a) shows the true sensor model used in simulation and Fig. 5(b) and 5(c) show the sensor models learned with 20 shelf tags and 4 shelf tags, respectively. Most importantly, our sensor model learned from 20 shelf tags is very close to the true model. Such approximation degrades only gradually as we reduce the number of shelf tags. When no shelf tags are used, the learned model deviates from all others because EM in this case is likely to be stuck in some local maxima.

After training, we used the learned sensor models to perform inference over a test trace with 10 object tags and 4 shelf tags, using 1000 particles per object. Most learned models (except the one using 0 shelf tag) result in small inference errors that are comparable to the results using the true model, and much better than the baseline, as shown in Fig. 5(e). This shows that our system can indeed learn accurate sensor models from small traces with a few tags of known locations.

Handling RFID sensing noise. We then investigate the sensitivity of our system to RFID sensing noise, for which we varied the read rate in the reader’s major detection range, RR_{major}, from 100% to 50%. Fig. 5(f) shows the results using a trace with 16 object tags and 4 shelf tags. Our system again performs much better than the baseline, and degrades its accuracy only slowly as RR_{major} is reduced. This is because inference can intelligently exploit the facts from the past to smooth noisy object readings and derive object locations, hence not highly sensitive to the changes of the read rate.

Handling reader location noise. We next evaluate our system’s ability to handle reader location noise. We generated traces by varying parameters of the reader location sensing model: the systematic error along the y axis μ_y was varied from 0 to 1, indicating a constant distance between the measured location and the true location; the random noise σ_y was set to 0.01 or 0.2, denoting little or high variation. Given the amount of noise present, we used 5000 particles per object to stabilize the performance. Fig. 5(g) shows the results of $\sigma_y = 0.2$ (the figure for $\sigma_y = 0.01$ is similar, hence omitted).

Our system’s ability to correct reader location noise is demonstrated by the difference between the curve (“motion model On-true”), which is our system using the true location sensing parameters, and the curve (“motion model Off”), which is a simplified method that uses the reported location as true location in inference. As μ_y increases, our system is very effective in correcting the systematic error, mostly via the evidence of shelf tags. In contrast, the lack of motion model leads to degradation almost linearly in μ_y. Finally, the curve (“motion model On-learned”) shows that we can very well approximate the best performance by learning the parameters of the location sensing model from a small training trace.

Handling moving objects. Next, we evaluate how the inference accuracy is affected by moving objects. The simulated data was generated by choosing a case of objects after some time interval and moving it to a new location. The time interval used here was 1600 seconds (our system is insensitive to this value). We varied the distance that the objects traveled from 0.5 to 20 ft. As shown in Fig. 5(h), the inference error
is sensitive to the middle range of distance, e.g., from 2 to 6 ft, where the new location is relatively close to the old location. In this case, it is hard to tell if an object has moved or not due to the reasons explained in Section IV-A. Since our method temporarily spreads the particles between the new and old locations, its accuracy is affected before the object is read enough times in the new location. When the distance of movement is large, our method discards all the old particles and recreates them from the new location, resulting in low inference error and insensitivity to further increased distance.

Other experiments. We also explored other factors such as the read frequency, noise in reader motion, frequency of object movements, and shelf area size for particle initialization. Overall, our system exhibited little sensitivity to these factors. Details are omitted here but available in [32].

C. Evaluation using a Real RFID Lab Deployment

To evaluate our system in real-world settings, we generated a lab RFID deployment as shown in Fig. 6(a). We erected two parallel shelves (assumed to be along the y axis), containing 80 EPC Gen2 Class 1 tags spaced four inches apart. Each shelf has five evenly-spaced reference tags whose true positions are known. We constructed a mobile reader by mounting a bi-static antenna connected to a ThingMagic Mercury5 RFID reader on an iRobot Create robot. The robot was programmed to scan one row of tags and turn around to scan the other, at a speed of .1 foot/sec with readings performed once per second. The robot computed its location using dead reckoning, with error in reported location up to 1 foot away from its true location. To emulate various read rates, we varied the reader’s timeout setting—the amount of time a tag is given to respond after the initial signal is sent by the reader—from .25 to .75 second.

We used the shelf tags to create a training trace to learn the sensor model for our antenna. The result in Fig. 5(d) shows that our antenna’s read area is spherical with a wide minor range, whose read rate is inversely related to an object’s angle from the center of the antenna; this agrees well with manually calibrated sensor models for similar ThingMagic readers [21].

We next compare our system to SMURF [17] using our lab traces. SMURF is an adaptive smoothing technique that for each epoch, decides if a tag has moved away from the sensing area when there is a missed reading. Given that SMURF cannot directly translate RFID readings into location events, we augmented it with additional sampling: In each epoch, if SMURF decides that the tag is still in range using smoothing,
a location of the tag is obtained by randomly sampling over the intersection of the read range and the shelf. At some point, if SMURF decides that the tag is no longer in scope, all sampled locations generated in those consecutive epochs are averaged to produce a location estimate. Since SMURF cannot learn the sensor model from data, we further offer the read range based on our learned model to enable sampling of the tag location.

Fig. 6(b) shows results of our system, the improved SMURF, and uniform. The first three rows of results are from runs using a small imaginary shelf, and the next three rows using a large imagined shelf. Since the read range can be large, such shelf information helps restrict the area for location sampling in all three algorithms. As can be seen, the accuracy of our system is within 0.39 to 0.54 foot. The error of SMURF is 1.3 to 1.7 times of our system when the shelf area is small and over 2.7 times when the shelf area is large. Overall, our system offers an average of 49% error reduction over SMURF.

These differences are due to two reasons: First, SMURF can not correct the error in reported reader location present in our traces. While smoothing is affective, sampling of object location is always performed from the reported reader location. This explains the difference between our system and SMURF along y where the robot drifted significantly away from the reported location. Second, object location sampling we added to SMURF is rather primitive compared to the sampling-based inference used in our system. The difference in their effects is shown by the error along x: the error of SMURF is strictly half of the shelf size in x, as inaccurate as uniform sampling.

D. Scalability Evaluation using Simulation

We next show how our system improves over basic particle filtering in scalability while maintaining high accuracy using the three advanced techniques presented in §IV. In scalability tests, we assume that the application has an accuracy requirement of within .5 foot from the true location. We created synthetic streams from two rounds of scan of a large warehouse. All measurements were obtained from a 3Ghz dual-core xeon processor with 6GB memory for use in Java.

Varying number of objects. We increased the number of objects from 10 to 20,000 and ran all three advanced techniques as well as the basic filter. For each technique, we selected the number of particles so as to meet the .5 foot accuracy requirement. For our factorized filter, we used 1000 particles for each object. The basic filter, however, uses unfactorized particles and needs a very large number of them, as explained in §IV-B. We used up to 100,000 particles for the basic filter for which the experiment managed to finish.

VI. RELATED WORK

RFID stream processing. The HiFi project[12] offers a declarative framework for RFID data cleaning and processing. Its techniques focus on temporal and spatial smoothing of readings generated by a fixed set of static readers. SMURF [17] is a particular cleaning approach employed in HiFi and we experimentally demonstrate the benefits of our approach over SMURF for mobile readers. Architectural issues for probabilistic RFID processing have discussed in context of Data Furnace [14] but the research is still underway.

Sensor data management [5], [7], [22], [30] mostly considers environmental phenomena such as temperature and light. Techniques for data acquisition [22] and model-based processing [5] are geared towards queries natural to such data (e.g., aggregation). In contrast, RFID data captures object identification and to support querying, such noisy, primitive data needs to be first transformed to clean, precise location events. Model-based views over sensor streams [6] employ probabilistic inference but are restricted to GPS readings that already reveal object locations and small numbers of objects.

RFID databases. RFID data management issues including
inference are discussed in [4]. Cascadia [34] supports RFID-based pervasive computing with event specification, extraction, and archival. Application rules are used to archive and compress RFID data into databases [33]. Inside RFID databases, advanced data compression techniques are available [15], data cleansing is integrated with query processing [27], and high-level information is recovered from incomplete, noisy data using known constraints and prior statistical knowledge [36].

Object and person tracking [20], [26], [29] focuses on tracking moving targets when the association between observed features and object identities is uncertain. In the RFID setting, however, object identities are given as part of the readings; the challenge is to translate high-volume noisy readings into clean precise location events. Hence, models from this research area are not suitable for our problem. Some probabilistic models are developed for GPS readings [20], [26], but these do not apply to our problem, because unlike GPS, RFID readings do not reveal locations directly. Moreover, the work in this area is designed for small numbers of objects (on the order of 10 objects), and does not scale to a warehouse setting.

Robotics. The structure of our model is similar to FastSLAM [23] that also uses a factorized particle filter. Unlike the sensors used in FastSLAM, however, RFID indicates only whether an object is nearby, not its location and range. The logistic sensor model that we adopt requires us to use different factorization and indexing techniques than FastSLAM. RFID-equipped robots have been recently used to estimate locations of robots [18] or RFID-attached objects [16], [9]. This line of work is not designed to support scalable stream query processing—existing work does not support online inference over RFID streams [9] or does so only for a small set of objects [16]. In contrast, our work employs a suite of techniques to scale inference to large numbers of objects at stream speeds. Second, modeling in previous work is limited. The sensor model is manually calibrated [16], [9], which is problematic because reader performance depends greatly on the characteristics of the environment. The reader motion model is also omitted in [9], which loses the ability to correct reader location noise.

VII. CONCLUSIONS

In this paper, we presented a probabilistic approach to translate noisy, raw data streams from mobile RFID readers into clean, rich event streams with location information. Our experiments show that our approach offers 49% error reduction over a state-of-the-art RFID cleaning approach such as SMURF while scaling to read rates of over 1500 readings/sec for numerous objects. In future work, we plan to address further query processing over inferred data for various monitoring applications. We will also enhance our techniques to address inter-object containment relationships and support handheld readers that lack reader location information.

Acknowledgements. This work has been supported in part by the National Science Foundation under the grants IIS-0746939, IIS-0812347, and CNS-0626873, and by a grant from the Vietnam Education Foundation (VEF). The authors also thank Sanjay Sarma and Christian Floerkemeier at MIT for initial discussion of mobile RFID readers.

REFERENCES