A versatile CARS microscope for biological imaging

Citation for published version:

Digital Object Identifier (DOI):
10.1002/jrs.2249

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Journal of Raman Spectroscopy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
*** PROOF OF YOUR ARTICLE ATTACHED, PLEASE READ CAREFULLY ***

After receipt of your corrections your article will be published initially within the online version of the journal.

PLEASE NOTE THAT THE PROMPT RETURN OF YOUR PROOF CORRECTIONS WILL ENSURE THAT THERE ARE NO UNNECESSARY DELAYS IN THE PUBLICATION OF YOUR ARTICLE

☐ READ PROOFS CAREFULLY

- Once published online or in print it is not possible to make any further corrections to your article

☐ ANSWER ALL QUERIES ON PROOFS (Queries are attached as the last page of your proof.)

- List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post

☐ CHECK FIGURES AND TABLES CAREFULLY

- Check sizes, numbering, and orientation of figures
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article
- Review figure legends to ensure that they are complete
- Check all tables. Review layout, titles, and footnotes

☐ COMPLETE COPYRIGHT TRANSFER AGREEMENT (CTA) if you have not already signed one

- Please send a scanned signed copy with your proofs by e-mail. Your article cannot be published unless we have received the signed CTA

Reprint and journal issue purchases

- Should you wish to purchase a minimum of 100 copies of your article, please visit http://www3.interscience.wiley.com/aboutus/contact_reprint_sales.html
- To acquire the PDF file of your article or to purchase reprints in smaller quantities, please visit http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html. Restrictions apply to the use of reprints and PDF files – if you have a specific query, please contact permreq@wiley.co.uk. Corresponding authors are invited to inform their co-authors of the reprint options available
- To purchase a copy of the issue in which your article appears, please contact cs-journals@wiley.co.uk upon publication, quoting the article and volume/issue details
- Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic or print form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permreq@wiley.co.uk
COPYRIGHT TRANSFER AGREEMENT

Date: ___________________ Contributor name: ___________________

Contributor address: ___

Manuscript number (Editorial office only): ___________________________

Re: Manuscript entitled ___

for publication in __

published by __

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal's instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue, Copyright © [year], copyright owner as specified in the Journal).

Links to the final article on Wiley-Blackwell's website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back the following rights to the Contributor in the version of the Contribution as originally submitted for publication:
 a. After publication of the final article, the right to self-archive on the Contributor's personal intranet page or in the Contributor's institution/employer's institutional intranet repository or archive. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].
 b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Reuse of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use are set forth at the following website: http://www.wiley.com/go/funderstatement. NIH grantees should check the box at the bottom of this document.

3. Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:
 a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserv, website or automated delivery. For those Contributors who wish to send high-quality e-prints, purchase reprints, or who wish to distribute copies more broadly than allowed hereunder (e.g. to groups of colleagues or mailing lists), please contact the publishing office.
 b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.
 c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor's institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor's institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.
 d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).
 a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.
 b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:
 (i) Full and accurate credit must be given to the Contribution.
 (ii) Modifications to the figures, tables and data must be noted. Otherwise, no changes may be made.
 (iii) The reuse may not be made for direct commercial purposes, or for financial consideration to the Contributor.
 (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.
D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor’s employment (as a “work-made-for-hire” in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company’s internal network. Copies so used may not be resold or distributed externally. However the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell’s written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the company/employer may make copies of and distribute the final published Contribution internally in print format or electronically on the Company’s internal network. Copies so used may not be resold or distributed externally. However the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell’s written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell’s reprint fee, the institution may distribute print copies of the published Contribution externally.

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR’S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor’s original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell’s permissions form or in the Journal’s Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

- Contributor-owned work
- Company/Institution-owned work
- U.S. Government work
- U.K. Government work
- Other Government work
- NIH Grantees

ATTACH ADDITIONAL SIGNATURE PAGES AS NECESSARY

Contributor’s signature
Type or print name and title
Co-contributor’s signature
Type or print name and title
Company or Institution (Employer-for-Hire)
Authorized signature of Employer
Date

Note to U.S. Government Employees
A Contribution prepared by a U.S. federal government employee as part of the employee’s official duties, or which is an official U.S. Government publication, is called a “U.S. Government work,” and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor’s signature line) and return this Agreement. If the Contribution was not prepared as part of the employee’s duties or is not an official U.S. Government publication, it is not a U.S. Government work.

Note to U.K. Government Employees
The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm

Note to NIH Grantees
Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/.nihmandate.

Authorized signature of Employer
Date

Note to Non-U.S., Non-U.K. Government Employees
If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.
A versatile CARS microscope for biological imaging

Andrew Downes,* Rabah Mouras and Alistair Elfick

We have constructed a novel, versatile Coherent anti-Stokes Raman scattering (CARS) microscope for biological imaging. The system employs a Nd: YVO₄ laser as Stokes (6 ps, 1064 nm), and a tunable optical parametric oscillators (OPOs) (5 ps, 700–1000 nm) as pump excitation, resulting in an observable range of ∼600–4000 cm⁻¹. A second OPO can be used as a replacement pump for low wavenumber excitation (down to ∼100 cm⁻¹). Pump and Stokes excitations are focused onto a single-mode fibre for ease of alignment, which is connected to the input of a confocal inverted optical microscope. The epifluorescent CARS signal is filtered using a spectrometer, and the photons counted with an avalanche photodiode. This detection is preferable to using bandpass filters and photomultipliers, as it allows all wavenumbers to be imaged and ensures rejection of unwanted fluorescent and scattered light. Our microscope comprises a heater stage and perfusion cell for imaging live cells, and allows complementary biological imaging techniques (differential interference contrast (DIC), second harmonic generation, sum frequency generation, one- and two-photon fluorescence, fluorescence lifetime imaging). In addition, our system features an atomic force microscope (AFM) which enables CARS imaging at 10-nm resolution. The details and advantages of the modular imaging system are described more fully, and the latest results are presented. Copyright © 2009 John Wiley & Sons, Ltd.

Keywords: CARS; coherent anti-Stokes Raman; live cell imaging; atomic force microscopy

Introduction

Optical microscopy is without doubt invaluable to biomedical research. However, optical microscopy suffers from two principal drawbacks – the lack of chemical information and the limit of resolution which restricts the size of observable features. Raman spectroscopy of cells and tissue delivers significant information on cell viability,[1,2] disease[3–5] and chemistry. Such spectra can be acquired in a typical time of 1–60 s on live mammalian samples,[6–8] but this is normally too long to enable Raman microscopy – the acquisition of a spectrum at each imaging pixel. Coherent anti-Stokes Raman scattering (CARS) microscopy[9–12] gets around the inefficiency of Raman spectroscopy by enhancing the signal level by 4–6 orders of magnitude.[10,13,14] This brings the image acquisition time down to seconds, so processes in live cells, such as mitosis, can be followed in real time.

In order to circumvent the second drawback of optical imaging – that of resolution – atomic force microscopy can be carried out with gold- or silver-coated tips. Optical spectroscopy and imaging has been performed on the scale of around 10 nm.[15–18] CARS microscopy combined with atomic force microscopy has been performed by one group[19–21] to enable chemical imaging of DNA nanoclusters.

In much of this paper, we will describe the design considerations behind the construction of a CARS microscope coupled to an atomic force microscope (AFM), for biological imaging. CARS microscopy images will be most useful when combined with other optical imaging modes, so the remit was to provide a highly versatile microscope with many imaging modes capable of live cell imaging. The clearest advantage of this hybrid microscope over a CARS microscope is that it offers an extremely wide range of imaging modes to provide complementary information on biological systems. The advantage of this system over a straightforward AFM is that this wide range of optical imaging modes can all be mapped with the same ∼10-nm resolution as topography.

Experimental

Choice of laser sources

Live cells undergo photodamage when exposed to high levels of continuous wave (CW) or pulsed laser power.[22,23] Owing to the absorption of light by a combination of water, lipids and haemoglobin, tissue is best imaged with light within the range 700–1100 nm.[24] In this wavelength range, photodamage depends quadratically on laser power, showing that two-photon absorption[22,23,25] is responsible. This is far more pronounced with femtosecond pulses; hence longer picosecond pulses are preferred for biological imaging as greater powers can be employed, resulting in substantially higher CARS signal levels. However, the efficiency of the CARS process drops as pulse length increases,[26] so the optimum pulses should be 1–10 ps in duration. Two-photon absorption is also more pronounced at shorter wavelengths, as increasing numbers of compounds can be excited, and this is accompanied by more autofluorescence.

Two types of pulsed laser source emerge as candidates. The first are Ti: sapphire oscillators, and the second are neodymium-pumped optical parametric oscillators (OPOs). In the first case, two Ti: sapphire sources with pulse widths of around 2 ps and repetition frequencies of around 80 MHz are linked electronically to limit the ‘jitter’ between sources. These sources are tuneable...
over the range ~700 to over 900 nm with a good amount of power. Sadly, we were unable to identify a picosecond Ti : Sapphire source with computer control; manual tuning between wavelengths limits the usability of these sources. The alternative picosecond source is a diode-pumped Nd:vanadate source, providing a wavelength of 1064 nm, which is frequency doubled to 532 nm. Our chosen source (High-Q Photocathode, Hohenems, Austria) provides over 7 W of 532 nm (pulse width 5–6 ps) and over 12 W of 1064 nm (pulse width 6–7 ps) with a repetition rate of 76 MHz. These longer duration picosecond sources generate significantly less non-resonant CARS than with femtosecond excitation. This non-resonant signal occurs in the absence of any sample and must be removed from the total CARS signal from femtosecond-based systems.\(^{27}\) The illumination system is drawn schematically in Fig. 1. The relative amount of power of 532 and 1064 nm beams is computer controlled by a motorized half-wave plate and polarizing beamsplitter. The 1064-nm beam acts as the Stokes pulse in the CARS process, and the pump pulse comes from an OPO (APE Levante Emerald; Berlin, Germany) seeded by the 532-nm output. The OPO output is computer tunable from 700 to 1000 nm, with powers of around 1 W. The OPO also provides ‘idler’ wavelengths above 1140 nm which can be combined with the lower wavelength (‘signal’) output, and are inherently synchronised. However, the minimum achievable wavenumber shift between the signal and idler is then around 1200 cm\(^{-1}\), which is too high for biological material, whose spectra start above 600 cm\(^{-1}\). Instead, the ‘signal’ output (700–1000 nm) is combined with the 1064 nm source with a dichroic mirror (Chroma, Rockingham, USA), to enable imaging of wavenumbers in the range 605 to over 4000 cm\(^{-1}\). The pulses are synchronised in time by adjusting a micrometer-driven delay stage.

Modification to confocal microscope

Both pulses are focussed onto a 2-m long single mode fibre (Thorlabs SM980-5.8–125, single mode from ~780 nm to >1064 nm) with high transmission in the near infrared (over 60%), and transferred to a laser scanning confocal microscope (Nikon BV ‘C1’, Amsterdam, Netherlands) on a separate optical table. The microscope and detection schemes are depicted in Fig. 2. A laser scanning microscope is required rather than a sample scanning stage, for fast imaging. A number of manufacturers produce similar laser scanning microscopes, but for the greatest flexibility a single-mode fibre input and multimode fibre output is required. Various wavelengths of custom-made long pass dichroic mirrors (Chroma, Rockingham, USA) are required within the scan unit, in order to separate the anti-Stokes (CARS signal) from the longer wavelength pump and Stokes (inputs).

Since both sources are inherently linked, a lengthy superposition of both focal spots before each imaging session is not required. Full alignment of the system is performed by optimizing the amount of power emanating from the single-mode fibre, of each beam in turn. No chromatic dispersion within the fibre is observed, so the delay stage does not need to be adjusted when changing Stokes wavelength. Owing to this linking of both Stokes and pump lasers into one effective point source – a single-mode fibre – an optical configuration sources connect to the scan unit (dotted line). A suitable dichroic mirror reflects these wavelengths towards the objective lens, and removes most of the backscattered laser light from the required signal (CARS, SHG, SFG, or fluorescence). A multimode fibre passes this signal to the photomultipliers (PMT1 and PMT2), directly to the avalanche photodiode (APD), or via the spectrometer. The forward-scattered signal is detected by another photomultiplier unit (PMT3) via another multimode fibre after passing through the appropriate filters.

Both pulses are focussed onto a 2-m long single mode fibre (Thorlabs SM980-5.8–125, single mode from ~780 nm to >1064 nm)
autofluorescence, second harmonic generation (SHG) and sum frequency generation (SFG) are all present, which all need to be separated as signals from each other. A spectrometer acts as a variable filter, in order to enable spectroscopy, which requires automated scanning of wavelengths.

Live cells can withstand around 2 mW without significantly affecting their constitutive processes\(^{[22]}\) when scanned with pulses of around 170 fs duration. Photodamage depends on the square root of the pulse width,\(^{[22]}\) so the maximum useable power for live cell imaging is around 10 mW with a pulse width of 5 ps, repetition rate around 80 MHz, wavelength of 780 nm, and NA of 1.4. For fixed cells, tissue sections and skin, up to 100 mW can be used without visible photodamage.\(^{[10]}\) In order to achieve around 30 mW of each beam at the sample, far more power needs to be produced because of the losses in the fibre, scan unit and objective lens. After replacing a collimating lens in the confocal scan unit to now slightly overfill the objective, 30 mW can be achieved at the sample throughout the whole range of the OPO, as well as for the 1064 nm beam.

Detection

For a Stokes wavelength of 1064 nm and pump wavelength of 770–1000 nm (corresponding to a wavenumber range of 605–3600 cm\(^{-1}\)), the anti-Stokes signal is produced at 943 nm down to 603 nm. Although red-sensitive photomultiplier tubes (Hamamatsu R3896, Shizuoka, Japan) are supplied with the laser scanning microscope, their efficiencies drop off rapidly above 800 nm. The quantum efficiency at 700 nm is 10%, at 800 nm is 6%, at 850 nm is 0.7% and at 900 nm is 0.01%. Hence wavenumbers in the important fingerprint region (around 600–1500 cm\(^{-1}\)) above 800 nm will be significantly harder to detect than those in the C–H stretch region (around 2900 cm\(^{-1}\)) measured at ~660 nm. Photomultipliers also suffer from dark currents, which limit the minimum achievable photon flux when compared to photon counting. So photon counting from an avalanche photodiode (Perkin Elmer SPCM-AQR-14, Vaudreuil, Canada) is preferred, given its low dark counts (around 100/s) and greatly improved quantum efficiency – rising from 25% at 943 nm (605 cm\(^{-1}\)) to 65% at 800 nm (2445 cm\(^{-1}\)).

A photon counting PCI card was acquired (Becker & Hickl SPC-140, Berlin, Germany), which is piloted by pixel, line and frame clock signals (‘TTL’ pulses) emanating from the laser scanning microscope. This unit can also perform gated detection, which reduces the dark counts further by sampling only in a nanosecond window around the laser pulse arrival time, thereby rejecting the noise in most of the 50 ns dead time between detected pulses. The card can also be piloted by Labview to achieve spectroscopy.

Multi-modal imaging

In addition to CARS imaging, a great deal of flexibility is offered in bio-imaging modes on this microscope. A 20× phase contrast objective allows us to find groups of cells on a cover slip, and differential interference contrast (DIC) on a 60× 1.4 NA objective imaging provides good-contrast white light images. Confocal fluorescence imaging is performed with a 532 nm source (or another simple diode laser). Alternatively, using filters in front of the 100 W tungsten lamp, widefield fluorescence is available with excitation down to 400 nm. But for reduced bleaching, superior resolution and background rejection, two-photon excited fluorescence (2PEF) is performed with either the OPO output (from 700 to 1000 nm, and above 1140 nm) or from the 1064 nm source; so we are able to excite virtually all available dyes. By either one- or two-photon excitation, fluorescence lifetime imaging (FLIM) can be performed by coupling the avalanche photodiode into the photon counting card. Both fluorescence- and CARS-correlation spectroscopy are also achievable with the same flexible photon counting card. Finally, SHG and SFG imaging can be measured either with photomultipliers or the avalanche photodiode. All these imaging modes can be acquired in the forward as well as the ‘epi’ direction. SHG highlights non-centrosymmetric structures, especially collagen; SFG is sensitive to surfaces and interface (where inversion symmetry is broken) and offers spectroscopy; and 2PEF images fluorescence with low photodamage and photo bleaching with good sectioning ability.

Results

Example images are shown in Fig. 3 of a 20-µm thick section of cancerous breast tissue donated anonymously by patients from the Edinburgh Royal Infirmary. The biopsies were embedded in paraffin wax to enable easy sectioning. The sample was then dewaxed with xylene washes to remove the paraffin, leaving holes in the tissue. Images in Fig. 3 were acquired in 20 s and averaged three times, and were collected in the backscattered (epi-) direction, with the exception of the DIC image (1 s, transmitted light). The CARS wavenumber in Fig. 3(b) was set to 1662 cm\(^{-1}\) to image the amide I band of proteins, which is stronger than the often-reported C–H stretch (around 2800–2950 cm\(^{-1}\)), as lipids have mainly been removed from the sample by the dewaxing process. The DIC image Fig. 3(a) maps changes in refractive index, and so highlights the fibres within the tissue – collagen and elastin. The 2PEF image Fig. 3(c) maps mainly the autofluorescent elastin fibres, and both SHG Fig. 3(d) and SFG Fig. 3(e) highlight collagen fibres.

Although picosecond pulse widths are far less efficient than femtosecond pulses (of the same average power) for SHG, SFG and 2PEF imaging, we are able to use significantly more power with picosecond sources. Photodamage occurs at far higher powers with a picosecond source, and hence imaging rates for two-photon microscopy (SHG, SFG and 2PEF) are quite similar for picosecond and femtosecond sources\(^{[24]}\). PMTs were used to acquire all these images, with a variety of short-pass and bandpass filters required. This was slightly faster than the spectrometer – APD combination at this wavenumber, but is significantly slower at wavenumbers below ~1200 cm\(^{-1}\). We then acquired a stack of 81 CARS images separated by 0.25 µm, with an acquisition time of 1 s per frame (averaged five times) giving a total stack acquisition time of 405 s. Using this data we constructed a three-dimensional model of Fig. 4 with the open source software Bioimage XD. High-resolution CARS images of strong Raman peaks for fixed cells were also acquired in only 1 s with the PMTs, or in 20 s with the spectrometer/APD combination (indicating significant losses through the spectrometer). The CARS resolution was measured as 350 nm laterally and 1100 nm axially.

To maximize the potential of CARS microscopy – both the fast imaging and no requirement for labelling – live cells rather than fixed samples should be imaged. In order to achieve this, the sample temperature should be maintained at 37 °C (or slightly lower for yeast); so a heated microscope enclosure or sample heating stage is required. For cells to grow, essential nutrients should be supplied in a growth medium pumped slowly across...
Figure 3. Complementary epi-detected confocal images from the same 212 \(\times \) 212 \(\mu \)m square region of a 20 \(\mu \)m thick sample of cancerous breast tissue. (a) Differential interference contrast (DIC), (b) CARS tuned to 1662 cm\(^{-1}\), (c) two-photon fluorescence (2PEF), (d) second harmonic generation (SHG), (e) sum frequency generation (SFG). Images (b) and (e) were acquired simultaneously, with 11 mW of 1064.4 nm and 16 mW of 904.4 nm (measured at the sample), all other images were acquired sequentially with illumination only at 904.4 nm. All pixel dwell times were 61 \(\mu \)s (except (a): 1.7 \(\mu \)s), and all images were 512 \(\times \) 512 pixels. The scan unit dichroic mirror (‘DM’ in Figure 2) was at 870 nm, the dichroic mirror in the filter block (PMT unit) was at 670 nm. Further shortpass filters were applied before (b) (800 nm) and (c), (d), (e) (660 nm). Bandpass filters were at 800 nm (width 30 nm) in (b), 535 nm (width 30 nm) in (c), 460 nm (width 50 nm) in (d), 480 nm (width 30 nm) in (e).

Figure 4. Views of a three-dimensional rendering of a stack of 81 epi-CARS images of cancerous breast tissue at 1662 cm\(^{-1}\). The total image volume is 212 \(\times \) 212 \(\times \) 20 \(\mu \)m. Powers measured at the sample were 11 mW of 1064.4 nm and 16 mW of 904.4 nm, pixel dwell times were 1.6 \(\mu \)s (1 second per image, averaged 5 times), and images were 512 \(\times \) 512 pixels.

the sample. Our system uses a cell biology kit (Veeco, Santa Barbara, USA) comprising a heated sample stage and a miniature liquid perfusion cell. The same perfusion cell is connected to a 5% CO\(_2\)/air mix, a necessary constituent of many pH buffers used in the culture of mammalian cells.

Atomic force microscope

Atomic force microscopy has been used extensively in cell biology, mainly for topographic imaging with a lateral resolution of 10 nm. Although the AFM can measure forces, it does not deliver images with chemical contrast. By focussing light onto a metal-coated AFM tip, a significant optical enhancement can be achieved directly beneath the tip apex. This optical enhancement has been reported as high as 10\(^7\) for Raman spectroscopy,\(^{[17]}\) but Raman imaging at 10 nm resolution has only been performed on carbon nanotubes, which are strong Raman scatterers. Biological material has too low a Raman cross section for the acquisition of a spectrum at each AFM imaging pixel; individual spectra are acquired in a matter of seconds adding up to hours for an image. This is despite the massive enhancement under the tip and may be explained by the limitation of excitation power imposed due to tip heating\(^{[28]}\); typically, 100 \(\mu \)W can be focussed into the tip region\(^{[19,29,30]}\) compared to tens of milliwatts used in standard Raman spectroscopy.

Fluorescence is greatly quenched by a gold or silver tip, giving only net enhancements of the order of 10, but fluorescence imaging has been performed at 10-nm resolution.\(^{[18]}\) Both tip-enhanced Raman and fluorescence techniques are affected by the background signal, which can be recorded without the tip present, and subtracted from the tip-enhanced image. This is acceptable for sparsely populated surfaces but can pose serious problems for densely packed surfaces. However, background removal is not an issue for multi-photon excitation – the intensity of illumination is then only sufficient for excitation in close proximity to the tip apex. Tip-enhanced two-photon fluorescence\(^{[31]}\) has been performed with a massively reduced background, reduced bleaching and improved enhancement.

CARS excitation offers a clear route for chemical imaging on the scale of 10 nm, when combined with AFM. Tip-enhanced CARS microscopy has been reported only by one group\(^{[19–21]}\). Employing 30 \(\mu \)W at 786.77 nm and 15 \(\mu \)W at 879.25 nm, they were able to image a vibration in an adenine molecule at 1338 cm\(^{-1}\) in a DNA cluster. Enough CARS signal was acquired in 100 ms per imaging pixel, which is slower than standard topographic imaging. A gold or silver tip is required for enhancement of the
electromagnetic field to the scale of ~10 nm, as a surface plasmon is efficiently excited with red or near-infrared light in these metals. The average laser power needs to be reduced to the microwatt range to achieve stable tip-enhanced CARS imaging. The repetition rate of the laser excitation was reduced by Ichimura et al.[19] from 80 MHz to 800 kHz by employing a pulse picker (APE, Berlin, Germany) to select 1 pulse in every 100. This reduces the CARS signal only by a factor of 100 in the far field, whereas lowering the energy of every pulse with an attenuator or filter would reduce the CARS signal by a factor of 106 because of the non-linear dependence of the signal on illumination intensity. The enhancement of CARS processes under the tip apex, given that it is a four-photon process, should be far higher than a Raman process involving just two photons – indeed, the ‘far field’ CARS signal without the tip present disappears into the noise.[19] For tip-enhanced CARS, the two OPOs are focussed onto a polarization-maintaining fibre (Thorlabs NL-PM-750, single mode from ~650 nm to >1550 nm).

In Fig. 5, we used low laser power to image the scattering from a gold-coated AFM cantilever (Veeco NPG, Santa Barbara, USA) in air. When the 30–60 nm radius tip apex is in focus, it scatters a large amount of light – comparable to the reflection from gold-coated cantilever. The inset spectrum shows that there is a good amount of enhancement from 532 nm up to 820 nm. For gold tips of a typical radius of 20–40 nm in water, the enhancement has a peak close to 700 nm[12–34]. The pump pulses employed should be around this value, and the Stokes pulse will be up to 800 nm for the ‘fingerprint’ region of biological molecules (600–1700 cm-1), with the anti-Stokes signal occurring down to 625 nm. For this reason, we require two OPOs to provide both Stokes and pump pulses, which are tuneable from 700 to 1000 nm. Silver tips have peaks closer to 600 nm[34] and have been shown to give less enhancement than gold at 647-nm excitation[34] and will doubtless be even less suitable at 700 nm and above. In detection, a spectrometer is required to filter out two-photon-induced fluorescence originating from the metal tip.[35] A small amount of four-wave mixing also originates from the tip, emitting at the same wavelength as the anti-Stokes (CARS) signal.

An AFM with sample scanning is required, contrary to most AFM designs that scan the tip, as the metallized tip should be fixed in the laser spot. Alignment of both laser spots onto the end of the tip is difficult – manual adjustment of a mirror can rarely achieve a good alignment. As both beams are inherently linked with the confocal scan unit, they can simply be raster-scanned over the tip in three dimensions and the position of the tip defined by the position of maximum scattering. The AFM we selected (Bioscope II, Veeco, Santa Barbara) scans the sample laterally, but the tip moves up and down in the axial direction. In order to compensate for the tip moving out of the focal spot while following large topographic features, a piezo-driven objective (Physik Instrumente PIFOC, Karlsruhe, Germany) moves the focal spot by the same amount, in synchronisation with the AFM. The AFM and optical microscope are placed on a separate actively damped optical table to prevent unwanted vibrations from the water-cooled lasers affecting the AFM images.

The AFM controller is able to count TTL pulses from the avalanche photodiode detector, which correspond to individual photons, enabling the simultaneous acquisition of topographic and tip-enhanced CARS images. The AFM can also pilot the photon counting card with pixel and line clock signals, to achieve tip-enhanced FLIM and gated detection.

Conclusion

We have designed and constructed a highly versatile and powerful microscope for biological imaging. A number of considerations and constraints restrict the choice of equipment and methods of illumination and detection. The picosecond pulse width was chosen to be optimum for CARS imaging. In addition, we have enabled the collection of images of fluorescence, 2PEF, FLIM, SHG, SFG, DIC and phase contrast, as well as Raman spectra, from live cells. Such complementary datasets can often reveal far more information than only one type of imaging. All images can be acquired in both forward- and epi-detected paths; and all signals can be acquired in diffraction-limited resolution, or at around 10-nm resolution with metal-coated AFM tips. Some example CARS images are presented, which were acquired at high speed, in addition to some tip-enhanced Raman spectra.

Acknowledgements

The authors would like to thank the EPSRC for funding this project (EP/E007864/1). They would also like to thank Prof. Donald Salter and Dr Grigore Rischit for providing the sample of breast tissue. AD is an RCUK Fellow and AE is an EPSRC Advanced Research Fellow.

References

5. J. Raman Spectrosc. 2009, 40, 0

![Figure 5. Confocal image of scattered light from an atomic force microscope (AFM) cantilever, illuminated at a wavelength of 720 nm. Image size 2011/4 m × 2011/4 m. Inset: graph of scattering from the gold tip apex normalized to the reflection from the surrounding gold-coated silicon cantilever.](image-url)
A versatile CARS microscope for biological imaging

A. Downes,* R. Mouras and A. Elfick

‘Probably the best microscope in the world!’: We describe a versatile microscope designed for CARS imaging of live cells, with further capabilities of 2PEF, SHG, SFG, FLIM and DIC imaging. Using an atomic force microscope, all these properties can be mapped on the scale of ~10 nm.
QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT mark your corrections on this query sheet.

Queries from the Copyeditor:

AQ1 “We have provided ‘CARS microscope for biological imaging’ as the ‘Running head’ for this article. It will appear on the top of the third page and all the recto pages of the article. Please confirm if this is appropriate.”

AQ2 Please confirm whether PCI needs to be expanded. If so, please provide the expansion.

AQ3 Please confirm if this abbreviation needs to be spelt out. If yes, please provide the expansion.

AQ4 Please confirm whether APD needs expansion. If so, please provide the same.
We would like to show our appreciation to you, a highly valued contributor to Wiley’s publications, by offering a **unique 25% discount** off the published price of any of our books*.

All you need to do is apply for the **Wiley Author Discount Card** by completing the attached form and returning it to us at the following address:

The Database Group (Author Club)
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
PO19 8SQ
UK

Alternatively, you can [register online](http://www.wileyeurope.com/go/authordiscount) at www.wileyeurope.com/go/authordiscount

Please pass on details of this offer to any co-authors or fellow contributors.

After registering you will receive your Wiley Author Discount Card with a special promotion code, which you will need to quote whenever you order books direct from us.

The quickest way to order your books from us is via our European website at:

http://www.wileyeurope.com

Key benefits to using the site and ordering online include:

- Real-time SECURE on-line ordering
- Easy catalogue browsing
- Dedicated Author resource centre
- Opportunity to sign up for subject-orientated e-mail alerts

Alternatively, you can order direct through Customer Services at: cs-books@wiley.co.uk, or call +44 (0)1243 843294, fax +44 (0)1243 843303

So take advantage of this great offer and return your completed form today.

Yours sincerely,

Verity Leaver
Group Marketing Manager
author@wiley.co.uk

*TERMS AND CONDITIONS
This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.*
REGISTRATION FORM
For Wiley Author Club Discount Card

To enjoy your 25% discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Accounting</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>[]</td>
</tr>
<tr>
<td>Corporate</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Business/Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>[]</td>
</tr>
<tr>
<td>Industrial/Safety</td>
<td>[]</td>
</tr>
<tr>
<td>Organic</td>
<td>[]</td>
</tr>
<tr>
<td>Inorganic</td>
<td>[]</td>
</tr>
<tr>
<td>Polymer</td>
<td>[]</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encyclopedia/Reference</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business/Finance</td>
<td>Civil</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>Communications Technology</td>
</tr>
<tr>
<td>Medical Sciences</td>
<td>Electronic</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>Environmental</td>
</tr>
<tr>
<td>Technology</td>
<td>Industrial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earth & Environmental Science</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitality</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genetics</th>
<th>Materials Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics/Computational Biology</td>
<td>[]</td>
</tr>
<tr>
<td>Proteomics</td>
<td>[]</td>
</tr>
<tr>
<td>Genomics</td>
<td>[]</td>
</tr>
<tr>
<td>Gene Mapping</td>
<td>[]</td>
</tr>
<tr>
<td>Clinical Genetics</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical Science</th>
<th>Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Clinical</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Forensic</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>Social & Personality</td>
</tr>
<tr>
<td>Imaging</td>
<td>Health & Sport</td>
</tr>
<tr>
<td>Obstetrics/Gynaecology</td>
<td>Cognitive</td>
</tr>
<tr>
<td>Oncology</td>
<td>Organizational</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>Developmental & Special Ed</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>Child Welfare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Profit</th>
<th>Physics/Physical Science</th>
</tr>
</thead>
</table>

Please complete the next page /
I confirm that I am (*delete where not applicable):

- a Wiley Book Author/Editor/Contributor* of the following book(s):
 - **ISBN:**
 - **ISBN:**

- a Wiley Journal Editor/Contributor/Editorial Board Member* of the following journal(s):

SIGNATURE: …………………………………………………………………………………… **Date:** ………………………………………

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE: (e.g. Mr, Mrs, Dr) …………………… **FULL NAME:** ……………………………………………………………………………………

JOB TITLE (or Occupation): ………

DEPARTMENT: ……..

COMPANY/INSTITUTION: ……..

ADDRESS: ……

……

TOWN/CITY: ………

COUNTY/STATE: …….

COUNTRY: ……

POSTCODE/ZIP CODE: ………

DAYTIME TEL: ……

FAX: ………

E-MAIL: ………

YOUR PERSONAL DATA

We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.
 [] Please tick the box if you do NOT wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post with details of titles and offers that may be of interest to you.
 [] Please tick the box if you do NOT wish to receive this information.

E-MAIL ALERTING SERVICE

We also offer an alerting service to our author base via e-mail, with regular special offers and competitions. If you **DO** wish to receive these, please opt in by ticking the box [].

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK.

TERMS & CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

PLEASE RETURN THIS FORM TO:

Database Group (Author Club), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, PO19 8SQ, UK author@wiley.co.uk
Fax: +44 (0)1243 770154