Edinburgh Research Explorer

2,2 ',3,3 ',4,4 ',5,5 '-Octaphenyl-1,1 ':4 ',1 ''-terphenyl and 2 ',3 ',5 ',6 '-tetrafluoro-2,2 ',3,3 ',4,4 ',5,5 '-octaphenyl-1,1 ':4 ',1 ''-terphenyl

Citation for published version:
Budy, SM, Nichol, GS & Loy, DA 2012, '2,2 ',3,3 ',4,4 ',5,5 '-Octaphenyl-1,1 ':4 ',1 ''-terphenyl and 2 ',3 ',5 ',6 '-tetrafluoro-2,2 ',3,3 ',4,4 ',5,5 '-octaphenyl-1,1 ':4 ',1 ''-terphenyl' Acta Crystallographica Section C - Crystal Structure Communications, vol. 68, pp. O23-O27. DOI: 10.1107/S0108270111051900

Digital Object Identifier (DOI):
10.1107/S0108270111051900

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Acta Crystallographica Section C - Crystal Structure Communications

Publisher Rights Statement:
Copyright © 2012 International Union of Crystallography. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org
The title compounds, C_{60}H_{66}, (I), and C_{60}H_{32}F_{4}, (II), are polyphenylated arylenes synthesized by one-step Diels–Alder cycloaddition reactions. In both structures, all molecules lie on crystallographic inversion centers. In the case of (I), there are two half-molecules present in the asymmetric unit, (LA) and (IB); the geometry of each half-molecule differs principally in the magnitudes of the dihedral angles between mean planes fitted through the central aryl ring and the pendant phenyl rings. The crystal used was a non-merohedral twin, with a refined twin scale factor of 0.460 (8). The dihedral angle between the plane of the central tetrafluorinated ring and the adjacent tetraphenylated ring in (II) is 83.87 (4)° between the plane of the central tetrafluorinated ring and the adjacent tetraphenylated ring. C—H···F angles of 123° and 157°, respectively. These form a hydrogen-bonded ribbon structure which propagates in the b-axis direction.

Comment

Polyphenylated aromatic molecules are of interest as building blocks in high-performance polymers, such as polyimides, poly(aryl ether)s, poly(ether ketone)s and polysulfones, which possess high glass transition (T_g) temperatures, high thermal stability and good mechanical properties and, therefore, have been identified for a variety of applications in government, industry and academia (Yates & Hayes, 2004; Chae & Kumar, 2006). The steric bulk of the phenyl substituents forces the polyphenylene backbone out of conjugation, making these materials insulating and soluble in organic solvents (Berre-shein et al., 1999). The addition of fluorine onto the aromatic molecules increases their oxidative stability (Drobny, 2001). The Diels–Alder cycloaddition of bicyclopentadienones with acetylenes has been widely used to produce polyphenylated aromatics and polarylenes (Stille et al., 1966; Rusanov et al., 2006), including those used as polymer electrolytes for fuel cells (Fujimoto et al., 2005). The former have often been used as model compounds to help understand the regiochemistry in the polymeric forms (Gagnon, Halperin et al., 2010; Gagnon, Maris et al., 2010).

As part of our research we reinvestigated 2,2″,3,3″,4,4″,5,5″-octaphenyl-1,1′:4′,1″-terphenyl and 2′,3′,5′,6′-tetrafluoro-2,2″,3,3″,4,4″,5,5″-octaphenyl-1,1′:4′,1″-terphenyl, (I), which was previously reported (Ried & Bönnighausen, 1960) but without a crystal structure, while 2′,3′,5′,6′-tetrafluoro-2,2″,3,3″,4,4″,5,5″-octaphenyl-1,1′:4′,1″-terphenyl, (II), has not been previously reported. The molecular structures of the Diels–Alder adducts (I) and (II) are presented here.

The asymmetric unit of (I) contains two half-molecules; consequently, there are two crystallographically unique molecules, (LA) and (IB), that are generated from these half-molecules by inversion symmetry. Both of these are shown in Fig. 1. An overlay of (LA) with (IB), showing the relative orientations of the various pendant and central phenyl rings, is shown in Fig. 2. Selected dihedral angles for (LA) and (IB), and for related compounds in the Cambridge Structural Database (CSD; Version 5.21, plus four updates; Allen, 2002), are provided in Table 1. Comparison of the dihedral angles for...
with PUNVOK in Table 1 reveals that those for (IA) and (IB) are relatively typical except for the 1/4 and 1/5 dihedral angles for (IA), both of which are noticeably elevated. The large difference between 1 and 4 is likely the result of the role of ring 4 in (IA) as an acceptor in a C—H/C1/C1/C1/C25 interaction, whereas ring 4 in (IB) is not involved in a similar interaction. Similarly, in (IA), ring 5 is involved in C—H/C1/C1/C1/C25 interactions with (IB). In the case of ring 6 in (II), this is involved in hydrogen bonding (discussed later). The values for PUNVEA are included in Table 1 for the purpose of contrast, since in this case C6 of the terphenyl core is substituted (i.e. C6-phenyl). All of the dihedral angles in PUNVEA are elevated relative to the rest of Table 1 owing to the presence of additional intramolecular steric crowding caused by the extra phenyl ring. It should also be noted that several of the literature structures are solvates, contain structural disorder, or are charged species with bulky counter-ions; the presence of such additional species in the asymmetric unit can make rationalization of molecular conformation on the basis of intermolecular interactions between chemically equivalent molecules rather difficult. However, in this case, the analysis in Table 1 shows a reasonable degree of consistency between the dihedral angles.

Three unique intermolecular C—H···π interactions are observed in (I) (Table 2). Two of these, C27—H27···CgA and C79—H79···CgB† [symmetry code: (ii) x, y, z + 1], are best described as having the C—H bond oriented towards the centroid of a butadiene fragment of an adjacent phenyl ring. The H27···CgA and H79···CgB† distances are both approximately 2.68 Å, where CgA and CgB are centroids defined in Table 2. These interactions connect adjacent molecules into stacks in the c-axis direction; the composition of the stacks alternates, i.e. (IA)–(IB)–(IA)–(IB) etc., and in alternate layers the long molecular axis is rotated by approximately 71° (Fig. 3).

The third interaction is between C66—H66 and the π-electron density above C23 [symmetry code: (i) x + 1, −y + 1/2, z + 1/2] and is much weaker than the previous two interactions, with an H66···C23 distance of 2.85 Å. In addition, there is an intermolecular close contact between adjacent phenyl rings at the ends of the molecules. The C66···C16 distance is 3.255 (3) Å, shorter than the van der Waals sum of 3.40 Å for two C atoms. The marked increase in the 1/4 dihedral angle in (IA) is attributed to these two interactions. These two interactions also connect each end of the long molecular axes of (IB) with an adjacent molecule of (IA) into (IA)–(IB)–(IA)–
chains oriented perpendicular to the (140) and (T40) planes (an example of one such chain is given in Fig. 4). The complete description of the crystal structure of (I) is a combination of one-dimensional stacks and one-dimensional chains, which combine to give two sets of interpenetrated three-dimensional networks of intermolecularly associated molecules.

The asymmetric unit of (II) contains just one half-molecule of the tetrafluorinated adduct. A whole molecule of (II), consisting of two asymmetric units related by crystallographic inversion symmetry, is shown in Fig. 5 and selected dihedral angles are given in Table 1. The 1/6 dihedral angle in (II) is 83.87 (4)°, while the corresponding angles in (IA), (IB) and perfluorobiphenyl (Naee, 1979) are 49.89 (12), 54.38 (3) and 59.6°, respectively. As shown in Fig. 6, larger 1/6 values correspond to a more twisted and less planar terphenyl core. A broader survey of related compounds (Table 1) shows that the 1/6 angle for (II) is unusual, over 20° greater than all others. This can be attributed to the participation of the F atoms in C—H···F hydrogen bonding, as discussed below. The aromatic C—F bond distances are consistent with typical values for *ortho*-F atoms, approximately 0.02 Å shorter than other types of Ar—F bond (Ar is aryl; Allen *et al.*, 1987). There is no crystal structure with which to compare the tetrafluorinated terphenyl model system, and the tetrafluorinated pentaphenylated version has not been synthesized or reported in the literature.

The presence of C—H···F interactions in (II) is a notable feature (Fig. 7 and Table 3). All F atoms are involved in these interactions, which form a hydrogen-bonded ribbon structure which propagates in the *b*-axis direction. The shortest F···F distance (3.19 Å) is longer than the van der Waals sum for two F atoms (2.91 Å) and so F···F close contacts are unlikely in this structure. Therefore, the formation of C—H···F interactions in (II) is the main driving force behind the significant nonplanar topology of the terphenyl core, as evidenced by the magnitude of the 1/6 angle in (II). By contrast, C—H···π interactions are hindered. The only exception to this is a long H27···C16′′ interaction (details and symmetry code are in Table 3) which is between adjacent ribbons in the crystal packing and has no role in the topology of the terphenyl core.

It is well known that *meta-* and *para*-substituted biphenyls and biphenyl itself have a planar configuration (Bastiansen, 1949), whereas extensive studies on terphenyl show it to be nonplanar at low temperature (Baudour *et al.*, 1977, 1986). For polyphenylated terphenyl and similar compounds, Gagnon, Maris *et al.* (2010) noted that such compounds generally lack aromatic interactions, attributed to the nonplanar topology of the molecules, which hinders close packing. Here we show that

Figure 4
The C—H···π-bonded chain in (I). C—H···π interactions are shown as dashed lines. The color scheme is the same as used in Fig. 2. The long *b* axis has been truncated.

Figure 5
Twice the asymmetric unit of (II), with displacement ellipsoids at the 70% probability level. Unlabeled atoms are related to labeled atoms by crystallographic inversion symmetry.

Figure 6
An overlay of (IB) and (II), fitted in the same way as for Fig. 2, with an r.m.s. deviation of 0.0278 Å. (II) is shown in gray (green in the electronic version of the paper).
close packing interactions do indeed exist between aromatic rings in this type of compound, although they are few in number when compared with the number of aromatic rings present. Indeed, quite dramatic changes in both molecular conformation and three-dimensional structure can be effected by fluorine substitution at the central aryl ring, which results in newly formed C—H⋯F and π–π interactions (dotted lines) in (II). The a axis has been truncated.

Experimental

1,4-Diethynylbenzene was obtained from Aldrich and purified by sublimation before use, 2,3,4,5-Tetraphenylcyclopentadienone (tetracyclone) was synthesized according to published methods (Johnson & Grummitt, 1943) and crystallized from a mixture of ethanol and benzene. 1,4-Diethynyl-2,3,5,6-tetrafluorobenzene was synthesized according to published methods (Johnson & Whitesides, 1988). Diels–Alder adducts (I) and (II) were obtained by the reaction between 1,4-diethynylbenzene (57 mg, 0.455 mmol) or 1,4-diethynyl-2,3,5,6-tetrafluorobenzene (90 mg, 0.455 mmol), respectively, with tetracyclone (350 mg, 0.910 mmol) under argon in benzene. 1,4-Diethynyl-2,3,5,6-tetrafluorobenzene was synthesized according to previous methods and sublimed before use (Neenan & Grummitt, 1943) and crystallized from a mixture of ethanol and benzene.

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
<th>1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) $x+1, -y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x, y, z+1$.

Table 2

<table>
<thead>
<tr>
<th>Intermolecular π-interactions (Å, deg) in (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_gA is the centroid of atoms C52/C53/C54/C55 and C_gB is the centroid of atoms C1/C4/C5/C6.</td>
</tr>
<tr>
<td>$D_{-H} - A$</td>
</tr>
<tr>
<td>C27$-$H27$-$...$C_gA</td>
</tr>
<tr>
<td>C66$-$H66$-$...$C23^v</td>
</tr>
<tr>
<td>C79$-$H79$-$...$C_gB^b</td>
</tr>
</tbody>
</table>

Compound (I)

<table>
<thead>
<tr>
<th>Crystal data</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH$_{46}$</td>
</tr>
<tr>
<td>$M_r = 839.03$</td>
</tr>
<tr>
<td>Monoclinic, $P2_1/c$</td>
</tr>
<tr>
<td>$a = 11.674 (2)$ Å</td>
</tr>
<tr>
<td>$b = 33.336 (6)$ Å</td>
</tr>
<tr>
<td>$c = 11.816 (2)$ Å</td>
</tr>
<tr>
<td>$β = 91.479 (3)^{\circ}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker Kappa APEXII DUO CCD diffractometer</td>
</tr>
<tr>
<td>Absorption correction: multi-scan (TWINABS; Sheldrick, 2006a)</td>
</tr>
<tr>
<td>$T_{min} = 0.977, T_{max} = 0.995$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(F^2 > 2\sigma(F^2)) = 0.043$</td>
</tr>
<tr>
<td>$wR(F^2) = 0.107$</td>
</tr>
<tr>
<td>$S = 1.04$</td>
</tr>
<tr>
<td>11292 reflections</td>
</tr>
<tr>
<td>596 parameters</td>
</tr>
<tr>
<td>H-atom parameters constrained</td>
</tr>
<tr>
<td>$Δρ_{max} = 0.16$ e Å$^{-3}$</td>
</tr>
<tr>
<td>$Δρ_{min} = -0.22$ e Å$^{-3}$</td>
</tr>
</tbody>
</table>
Table 3
Intermolecular hydrogen bonding and π-interactions (Å, °) in (II).

<table>
<thead>
<tr>
<th>D–H ·· ·A</th>
<th>D–H</th>
<th>H···A</th>
<th>D···A</th>
<th>D–H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30–H30···F1</td>
<td>0.981 (16)</td>
<td>2.572 (15)</td>
<td>3.2084 (11)</td>
<td>122.6 (11)</td>
</tr>
<tr>
<td>C6–H6···F2</td>
<td>0.967 (16)</td>
<td>2.624 (16)</td>
<td>3.5517 (12)</td>
<td>157.0 (12)</td>
</tr>
<tr>
<td>C27–H27···C16w</td>
<td>1.000 (16)</td>
<td>2.825 (16)</td>
<td>3.6927 (14)</td>
<td>145.5 (12)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x, y + 1, z; (ii) x, y – 1, z; (iii) x – 1/2, y – 1/2, z – 1/2.

Compound (II)

Crystal data

$C_{66}H_{46}F_4$

$M_r = 911.00$

Monoclinic, P_2_1/n

$\alpha = 19.7494 (9)$ Å

$\beta = 6.1217 (3)$ Å

$\epsilon = 20.4762 (10)$ Å

$\delta = 0.19754 (9)$ Å

$\beta = 109.754 (2)$

$\nu = 2329.89 (19)$ Å3

$\rho = 1.04$

$R_{	ext{int}} = 0.026$

$R_{	ext{free}} = 0.026$

Data collection

Bruker Kappa APEXII DUO CCD diffractometer

Absorption correction: multi-scan

$\mu = 0.09$ mm$^{-1}$

$T = 100$ K

$U = 0.31 	imes 0.19 	imes 0.16$ mm

$\alpha = 400$ parameters

Reﬁnement

$R[F^2 > 2\sigma(F^2)] = 0.039$

$wR(F^2) = 0.112$

$S = 1.04$

55308 measured reflections

5932 independent reflections

$R_{	ext{int}} = 0.026$

$R_{	ext{free}} = 0.026$

For (I), the crystal used was found to exhibit non-merohedral twinning, which was handled by a combination of CELL_NOW (Sheldrick, 2004) and TWINABS (Sheldrick, 2008a), with successive reﬁnement of the unit-cell parameters by SAINT (Bruker). The twin law is 100/0, 010/0 and the reﬁned twin scale factor is 0.460 (8) and the calibrated scale factor is 0.460 (8) for (I); SAINT for (II). For both compounds, data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to reﬁne structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL, pubICIF (Westrip, 2010) and local programs.

SMB speciﬁcally recognizes the Diversity Fellowship for Underrepresented Students. The authors thank the Nuclear Magnetic Resonance and Mass Spectrometry facilities of the University of Arizona. The diffractometer was purchased with funding from NSF grant No. CHE-0741837. This research was funded by Energy Materials Corporation (EMC) and the University of Arizona.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3079). Services for accessing these data are described at the back of the journal.

References

Budy et al. • $C_{66}H_{46}$ and $C_{66}H_{42}F_4$