In situ measurements of the Majorite-Akimotoite-Perovskite phase transition boundaries in MgSiO3

Citation for published version:

Digital Object Identifier (DOI):
10.1029/2001GL013549

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Geophysical Research Letters

Publisher Rights Statement:
Published in Geophysical Research Letters by the American Geophysical Union (2001)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
In Situ Measurements of the Majorite-Akimotoite-Perovskite Phase Transition Boundaries in MgSiO₃

Kei Hirose, Tetsuya Komabayashi, and Motohiko Murakami
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan

Ken-ichi Funakoshi
Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo, Japan

Abstract. Here we report the phase boundaries between majorite, akimotoite (ilmenite), and perovskite in MgSiO₃ determined by in situ measurements in a multi-anvil apparatus. We used both gold and platinum as internal pressure standards at high pressure and temperature. Our results obtained at 1400-2000°C, together with previous results obtained at 1000-1200°C by Ono et al. [2001], precisely locate the akimotoite-perovskite transition boundary at P (GPa) = 25.09 - 0.0027 x T (°C), based on the P-V-T equation of state of gold [Anderson et al., 1989]. Our new experimental data show the position of triple point to be 20.0 GPa and 1920°C. The present measurements reconfirm our earlier study [Hirose et al., 2001] that Anderson's gold pressure scale gives slightly higher pressures than the platinum pressure scale proposed either by Jamieson et al. [1982] or Holmes et al. [1989].

1. Introduction

MgSiO₃-rich perovskite is the predominant mineral in the Earth's lower mantle. Attempts have been made repeatedly to determine its stability at high pressure and temperature, including recent in situ synchrotron X-ray diffraction measurements in a multi-anvil apparatus [Kato et al., 1995; Kuroda et al., 2000; Ono et al., 2001]. The phase transition between akimotoite and perovskite was detected by observing the change in diffraction pattern during either a temperature or a pressure cycle in these previous studies. This method works well if the transition occurs relatively fast. However, a precise determination of the phase boundary was hindered in these studies by (1) the loss of diffraction peaks of akimotoite due to rapid grain growth at high temperature and (2) the slow phase transition between the high-pressure phases by a kinetic effect. In the present in situ measurement, therefore, the reaction kinetics is a concern.

We determined the majorite - akimotoite - perovskite phase transition boundaries in MgSiO₃ in a wide temperature range from 1400 up to 2000°C. To avoid kinetic effects, we collected only one data point per run at a P-T condition of interest, like a conventional quench experiment. Both gold and platinum were used as internal pressure standards, and their consistency was examined by a simultaneous measurement. Our new experimental data also determine the position of the triple point.

2. Experimental

High-pressure experiments with in situ X-ray diffraction measurements were conducted at SPring-8 using the multi-anvil apparatus (SPEED-1500) [Utsumi et al., 1998]. The same experimental techniques were applied as Hirose et al. [2001]. We used a high-pressure 8/3 assembly with a cylindrical Re-heater (25-μm thickness), similar to that described in Bertka and Fei [1997]. Temperatures were monitored by the W5%Re-W26%Re thermocouple. The anhydrous glass starting material with MgSiO₃ composition was loaded near the thermocouple. X-ray diffractions were collected from a 50×100-μm area of the pressure marker (mixture of Au or Pt and MgO) at high pressure and high temperature. Its position was precisely chosen using the CCD image looking through the anvil gap (Figure 1). The temperature difference over the entire region of the pressure marker was estimated to be less than 30°C at 2000°C assuming no pressure gradient. This temperature gradient could cause the uncertainty in pressure calculation less than 0.2 GPa using P-V-T equation of state. The primary pressure scales used here are the P-V-T equation of state of gold proposed by Anderson et al. [1989] and of platinum by Jamieson et al. [1982] (Table 1). The diffraction lines of Au (111, 200, 220,

Figure 1. X-ray CCD image of the assembly at 21 GPa. The white square represents the area of 50×100-μm, from which X-ray diffraction was collected. Both gold and platinum were closely loaded but separated by a thin layer of MgO to avoid metal alloying.
Table 1. Experimental conditions and results

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Temperature (°C)</th>
<th>Duration (min)</th>
<th>Pressure (GPa)</th>
<th>Run product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Au*</td>
<td>Pt**</td>
</tr>
<tr>
<td>1</td>
<td>1400</td>
<td>60</td>
<td>20.701</td>
<td>20.226</td>
</tr>
<tr>
<td>2</td>
<td>1400</td>
<td>60</td>
<td>21.350</td>
<td>20.994</td>
</tr>
<tr>
<td>3</td>
<td>1850</td>
<td>30</td>
<td>20.155</td>
<td>19.895</td>
</tr>
<tr>
<td>5</td>
<td>1900</td>
<td>15</td>
<td>20.02***</td>
<td>19.174</td>
</tr>
<tr>
<td>7</td>
<td>2000</td>
<td>10</td>
<td>20.34***</td>
<td>19.248</td>
</tr>
</tbody>
</table>

* Au scale by Anderson et al. [1989].
** Pt scale by Jamieson et al. [1982].
*** Pressure was estimated by load-pressure relationship (Figure 4).

Ak, akimotoite; Pv, perovskite; Mj, majorite.

3. Phase boundaries in MgSiO₃

Seven runs were conducted to determine the phase transition boundaries. The results are shown in Figure 3 based on Anderson's gold pressure scale. In the two 2000°C-runs, only platinum was loaded as a pressure standard, because we had lost the diffraction peaks of gold during the temper-

Figure 2. Examples of Raman spectra of the recovered samples.

Figure 3. Phase transition boundaries in MgSiO₃ based on Anderson's gold scale [Anderson et al., 1989]. Open symbols, perovskite (Pv); solid symbols, akimotoite (Ak); open symbol with cross, majorite (Mj). The half-filled squares show the coexistence of akimotoite and perovskite. The squares represent the data points obtained in this study. Bars represent initial pressure after reaching a temperature of interest and final pressure before quenching (Table 1). The circles are from [Ono et al., 2001]. Pressures in the runs at 2000°C (gray symbols) were estimated from the calibration curve (Figure 4). Errors in these two runs are from the reproducibility of pressure at a given load force of the apparatus.
ature increase to 2000°C due to grain coarsening near the melting temperature. For these two runs conducted at 650 and 680-ton, pressures in Anderson’s gold scale were best estimated from the pressure calibration curve at each temperature (pressure as a function of load force and temperature) (Figure 4). They were established by the total of eight runs we have made at 1750-2000°C using the same high-pressure assembly with the multi-anvil apparatus at SPring-8 [Hirose et al., 2001].

The precise phase boundary was not defined in the previous in situ X-ray observations by Kato et al. [1985] and Kuroda et al. [2000]. And the Clapeyron slope was not well determined by Ono et al. [2001], because the phase transition was observed only in the limited temperature range at 1000-1200°C. Our new experimental data obtained at 1400-2000°C, and together with those by Ono et al. [2001], tightly constrain the akimotoite-perovskite transition boundary. The boundary shown in Figure 3 is represented by a linear equation \(P \) (GPa) = 25.09 - 0.0027 \(\times \) T (°C) based on Anderson’s gold pressure scale.

The Clapeyron slope of the majorite (tetragonal garnet) - perovskite transition boundary was not precisely determined in the present experiments. A thermodynamical calculation using the physical parameters shown by Akaogi and Ito [1999] gives the slope of 0.0013 GPa/°C for this boundary. If we take this value in Figure 3, the position of the triple point should be at 20.0 GPa and 1920°C.

The phase transition pressures were determined also by the platinum pressure standard (Figure 5). The simultaneous measurement of both the metal pressure standards in a single run at 1400°C showed that Jamieson’s platinum scale gives 0.55-0.70 GPa lower pressures than Anderson’s gold scale (Table 1) [Hirose et al., 2001].

The choice of equation of state, as well as the choice of pressure standard, could lead to a significant difference in the determination of phase transition pressures by the in situ X-ray diffraction measurements (Figure 5). The phase transition pressures in MgSiO3 were recalculated using a different equation of state of gold [Jamieson et al., 1982] and platinum [Holmes et al., 1989], respectively, from the same unit cell volume data. The akimotoite-perovskite transition pressure based on Jamieson’s gold equation of state is 2 GPa higher than that from Anderson’s at 1600°C, and is consistent with that determined by conventional quench experiments [Ito and Takahashi, 1989]. It was, however, demonstrated that Jamieson’s gold pressure scale deviates widely from other pressure scales such as NaCl, Pt, W, and Mo [Hirose et al., 2001]. On the other hand, pressures calculated from both the platinum equations of state are relatively similar. Holmes’s equation gives 0.6 GPa higher pressure at 1600°C. Shim et al. [2001] suggested from laser-heated diamond cell experiments that Holmes’s platinum scale gives 2 GPa higher pressures than Anderson’s gold scale in a similar pressure range, which may explain their different results for the post-spinel phase transition pressure from those by Itofune et al. [1988]. The present simultaneous measurements of both the pressure standards by the multianvil apparatus, however, showed that the platinum scale either by Holmes et al. [1989] or Jamieson et al. [1982] predicts even lower pressures than Anderson’s gold scale.

Acknowledgments. We thank S. Oho, Y. Nishihara, G. Helffrich and J. Ando for helpful discussions. The comments by anonymous reviewers greatly improved the manuscript. The in situ X-ray experiments were carried out at SPring-8 (2000A0238-ND-np and 2001A0290-CD-np).

References

K. Funakoshi, Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo 679-5198, Japan.

K. Hirose, T. Komabayashi, and M. Murakami, Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Okayama, Meguro, Tokyo 152-8551, Japan (e-mail: kei@geo.titech.ac.jp).

(Received May 30, 2001; revised September 6, 2001; accepted September 12, 2001.)