Direct observations of Skin-Bulk SST variability

Citation for published version:
https://doi.org/10.1029/1999GL011133

Digital Object Identifier (DOI):
10.1029/1999GL011133

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Geophysical Research Letters

Publisher Rights Statement:
Published in Geophysical Research Letters by the American Geophysical Union (2000)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Direct observations of Skin-Bulk SST variability

M. J. Murray, M. R. Allen, C. J. Merchant, A. R. Harris, and C.J. Donlon

Abstract. Skin sea-surface temperatures from the first Along Track Scanning Radiometer (ATSR) are compared with coincident bulk temperatures from the Tropical Atmosphere Ocean (TAO) moored buoy array in the equatorial Pacific Ocean. The response of the skin–bulk sea-surface temperature difference (ΔT) to variations in wind speed and surface heat flux is examined. The use of remotely-sensed skin temperatures for this purpose is enabled by ATSR’s unique design which permits the independent retrieval of ocean skin temperature to an accuracy of 0.3 K. For the four-year period considered (August 1991–August 1995), almost 6000 coincident skin and bulk sea-surface temperature (SST) measurements were available; at night, the mean value of ΔT is −0.20 ± 0.46 K, with a daytime mean value of +0.05 ± 0.51 K. ΔT is found to depend on both net heat flux and local wind speed as predicted by the Saunders [1967] model and other formulations, and an estimate of the Saunders λ parameter is obtained.

1. Introduction

Satellite infrared radiometers sense the radiant temperature of the ocean skin, whereas bulk SST as measured from ships and buoys is representative of the uppermost few meters of the water column. Skin SST is typically 0.1–0.5 K cooler than the immediate sub-surface water, although considerable variation in the skin–bulk difference has been observed [e.g. Donlon et al., 1999]. This temperature difference is due to the vertical heat flux through the thermal boundary layer in the top millimeter of the ocean; net surface heat flux is almost always from ocean to atmosphere, resulting in a cool ocean skin. Total heat flux at the sea surface is the sum of net infrared, sensible and latent heat flux, and in daytime a contribution from the small proportion of incoming solar radiation absorbed in the skin layer. Heat transfer through the boundary layer is predominantly due to molecular conduction, as turbulent transfer is suppressed by the density difference across the ocean-air interface. The magnitude of this skin effect increases both with net surface heat flux and the thickness of the conduction layer [Saunders, 1967]. Wind speed influences the skin effect in two competing ways: increasing wind speed increases total surface heat flux which tends to increase the skin effect, but also thins the conduction layer, which tends to reduce the skin effect. Generally it is predicted that the magnitude of the skin effect will increase with net surface heat flux (Q) at a given wind speed (u) and decrease with increasing wind speed for a given heat flux. For example, Saunders [1967] and Hasse [1971] predicted a relationship approximately of the form ΔT ∝ Q/u, whereas Wick et al., [1996] predicted a Q/u^0.25 dependence (both appropriate in conditions of forced convection where u > 2 m s^-1). In a comparison of skin effect parameterizations based on shipborne data, Kent et al., [1996] reported the Saunders model best reproduced the observed skin effect variability in the wind speed range 3–7 m s^-1.

In this study, skin SSTs are compared with bulk SSTs measured at 1 m depth. Thermal stratification of the near-surface ocean develops in conditions of high insolation and low wind speed. This diurnal thermocline can be considerable, and surface temperatures several Kelvin warmer than water at 1 m depth have been observed on calm sunny days [Fairall et al., 1996a]. After dusk, any diurnal thermocline is eroded by convective overturning, and for ATSR nighttime observations at a local solar time (lst) ~ 22.30, the top meter of the ocean is well mixed, and the measured skin–bulk SST difference is due solely to the skin effect. However for daytime observations, particularly at low wind speed, the difference between skin and 1 m bulk SSTs will be due to both the diurnal thermocline and the skin effect.

Figure 1. Histogram showing distribution of ΔT for nighttime (solid line) and daytime (dashed line) data.
2. Data

ATSR on board ESA's ERS-1 satellite, is a dual-view, self-calibrating, infrared radiometer with channels at 1.6, 3.7, 10.8 and 12.0 μm; this instrument delivered an independent record of global skin SST between August 1991 and July 1996 [Mutlow et al., 1994; Murray et al., 1998a]. ERS-1 is in a sun-synchronous orbit with day and night overpasses around 10.30 and 22.30 LT. Skin SST is retrieved by taking the linear sum of thermal brightness temperatures with associated coefficients derived from a radiative transfer model [Zavody et al., 1995]. Only dual-view, 11 and 12 μm data were used for SST retrieval in this study (due to the limited availability of 3.7 μm data). The coefficient set used is a version of the Merchant et al., [1999] aerosol-robust coefficients, modified to account for the ATSR detector temperature variation; comparison with AVHRR and buoy SSTs has shown the retrieved SSTs are accurate to better than 0.3 K [Murray et al., 1998a, b; Merchant and Harris, 1999].

Hourly-averaged bulk SSTs measured at 1 m depth to an accuracy of 0.03 K, together with measurements of near-surface wind speed, air temperature, and relative humidity were available from the TAO buoy network [Prestag et al., 1994]. Total (non-solar) heat fluxes were derived from the TAO data using the Fairall et al., [1996b] formulation. For the four years of data considered, there were a total of 5947 cases where an ATSR SST and a collocated TAO measurement within one hour were available. For ~1% of these matchups, the skin–bulk difference exceeded 2 K and these data were excluded as likely to be compromised by cloud contamination or other problems, leaving 3157 nighttime and 2724 daytime matchups. Nominal buoy positions were always at the corner of four ATSR ten-arcminute cells, thus an ATSR SST represents the mean of between one and four measurements, each covering ~18 km x 18 km.

Figure 2. Geographic variation of ΔT for nighttime (upper), and daytime (lower) observations. This is based on mean ΔT for those buoy positions which provided more than 20 matchups. Buoy positions are indicated with a crossed circle.

3. Results and Discussion

Figure 1 shows the distribution of ΔT for both nighttime and daytime conditions. Nighttime data exhibit a mean ΔT = -0.20 ± 0.46 K, and in daytime ΔT = +0.05 ± 0.51 K. Figure 2 shows the geographic variability of observed ΔT. A ubiquitous and fairly-uniform cool skin prevails at night, whereas daytime ΔT is subject to considerable geographic variation. Considering only the western Pacific, gave nighttime ΔT = -0.18 ± 0.20 K (n = 399) and daytime ΔT = +0.20 ± 0.26 K (n = 323). This nighttime value is in close accord with the value of −0.2 K previously reported for this region [Webster et al., 1996]. The increased daytime ΔT is associated with the enhanced diurnal thermocline due to the light wind conditions characteristic of the western Pacific warm pool [Fairall et al., 1996a].

Figure 3. Response of ΔT to wind speed (with wind speed binned into 1 m s⁻¹ intervals) for nighttime (circles), and daytime data (squares); the standard error in ΔT is shown.

Figure 4. Contour plot of ΔT as a function of wind speed (binned into 1 m s⁻¹ intervals) and total (non-solar) surface heat flux (binned into 30 W m⁻² intervals) for nighttime (upper) and daytime data (lower). Heat flux is positive from ocean to atmosphere. Due to the large sample size, errors associated with the ΔT contours are less than 0.05 K for the entire data region.
Figure 3 shows ΔT against wind speed for both nighttime and daytime conditions. At night, the largest skin effect (most negative ΔT) is associated with lowest wind speeds, becoming smaller with increasing wind speed, and stabilizing around -0.2K at wind speeds above 4 m s^{-1}. This behaviour suggests that in the range $4-10\text{ m s}^{-1}$, the increase in sensible and latent heat flux associated with increasing wind speed, balances the effect of the wind-induced thinning of the conduction layer, rendering ΔT fairly independent of wind speed. However, at low wind speed, net longwave heat flux, which is insensitive to wind speed, is a significant fraction of surface heat flux, and the thinning of the conduction layer concomitant with increasing wind speed is the dominant effect. For daytime data, in conditions of very low wind speed ($\sim 1\text{ m s}^{-1}$), differential warming in the near-surface ocean leads to mean surface temperature approximately 0.8K warmer than water at 1 m depth, as might be expected at ~ 10.30lst. As wind speed increases, the top layer of the ocean is mixed, and ΔT rapidly decreases, then stabilizes close to zero in the wind speed range $4-7\text{ m s}^{-1}$ as discussed below. At higher wind speeds, ΔT approaches the nighttime mean value of -0.2K. The ocean skin is expected to be destroyed by wave breaking at wind speeds above $\sim 10\text{ m s}^{-1}$; such conditions rarely coincide with clear skies, therefore insufficient matchups are available to confirm a transition to negligible ΔT at high wind speed. Figure 3 suggests that for validation purposes, in the absence of heat flux estimates, tropical skin SST measurements should be compared to bulk SST measurements only in conditions of moderate to high wind speed. Specifically, a skin–bulk adjustment of ~ 0.2K is appropriate in daytime when $u > 7\text{ m s}^{-1}$, or at night when $u > 4\text{ m s}^{-1}$. Donlon et al., [1999] reached a similar conclusion based on shipborne data which covered a much larger range of weather conditions.
4. Conclusion

Traditionally, skin—bulk SST comparisons have relied on skin SSTs from shipborne radiometers as satellite SST retrievals have depended on bulk SSTs for calibration purposes [McClain et al., 1985]. ATSR has provided the first remotely-sensed SSTs at the accuracy required to conduct a study of the skin—bulk effect. Inevitably considerable noise derives from comparison of hourly-averaged point bulk SST measurements with instantaneous, spatially-averaged skin SSTs. Nevertheless, the large sample size enables analysis of the response of ΔT to heat flux and wind speed, and suggests the relationship between these quantities can be characterized, with the Saunders model adequately representing the skin effect variation at moderate to high wind speeds. The influence of surface heat flux on skin—bulk variability is clearly demonstrated, suggesting that this relationship may be useful in the validation of heat flux estimates whenever coincident bulk and skin temperatures, and wind speed measurements are available.

Acknowledgments. ATSR data were provided courtesy of ESA and were processed at RAL. MJM, MRA and CJM were funded by the Natural Environment Research Council. ARH was funded under the Climate Prediction Programme of the Dept. of the Environment, Transport and the Regions. TAO data were provided by the TAO Project Office, (Michael J. McPhaden, Director). We thank C. Mutlow, T. Nightingale and P. Watts for useful discussion.

References

M.R. Allen and M.J. Murray, SSTD, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K. (e-mail: m.r.allen@rl.ac.uk; jo.murray@rl.ac.uk)
C.J. Donlon, Marine Environment Unit, I-21020 Ispra (VA)-ITALY (e-mail: craig.donlon@jrc.it)
C.J. Merchant, Dept. of Meteorology, University of Edinburgh, Edinburgh EH9 3JZ, U.K. (e-mail: chris@met.ed.ac.uk)
A.R. Harris, The Met Office, London Road, Bracknell, Berkshire, RG12 2SZ, U.K. (e-mail: arharris@meto.gov.uk)

(Received October 19, 1999; accepted January 28, 2000.)