Dark Energy Survey Year 1 results: The relationship between mass and light around cosmic voids

(The DES Collaboration)

Author affiliations are listed at the end of the paper

ABSTRACT

What are the mass and galaxy profiles of cosmic voids? In this paper we use two methods to extract voids in the Dark Energy Survey (DES) Year 1 redMaGiC galaxy sample to address this question. We use either 2D slices in projection, or the 3D distribution of galaxies based on photometric redshifts to identify voids. For the mass profile, we measure the tangential shear profiles of background galaxies to infer the excess surface mass density. The signal-to-noise ratio for our lensing measurement ranges between 10.7 and 14.0 for the two void samples. We infer their 3D density profiles by fitting models based on N-body simulations and find good agreement for void radii in the range 15-85 Mpc. Comparison with their galaxy profiles then allows us to test the relation between mass and light at the 10%-level, the most stringent test to date. We find very similar shapes for the two profiles, consistent with a linear relationship between mass and light both within and outside the void radius. We validate our analysis with the help of simulated mock catalogues and estimate the impact of photometric redshift uncertainties on the measurement. Our methodology can be used for cosmological applications, including tests of gravity with voids. This is especially promising when the lensing profiles are combined with spectroscopic measurements of void dynamics via redshift-space distortions.

Key words: large-scale structure of Universe – cosmology: observations – gravitational lensing: weak

1 INTRODUCTION

Cosmic voids are the most underdense regions of the Universe and constitute its dominant volume fraction. Unlike collapsed structures, which are strongly affected by non-linear gravitational effects and galaxy formation physics, cosmic voids feature less non-linear dynamics (e.g., Hamaus et al. 2014a) and are marginally affected by baryons (e.g., Paillas et al. 2017). This suggests voids to be particularly clean probes for constraining cosmological parameters, which has already been exploited in the recent literature (e.g., Sutter et al. 2012; Hamaus et al. 2016; Mao et al. 2017). Observational studies on cosmic voids have seen a rapid increase in recent years, leading to the discovery of the uncharted cosmological signals they carry. These range from weak lensing (WL) imprints (e.g., Melchior et al. 2014; Clampitt & Jain 2015; Sánchez et al. 2017),...
over the integrated Sachs-Wolfe (ISW) effect (e.g., Granett et al. 2008; Nadathur & Crittenden 2016; Cai et al. 2017; Kovács et al. 2019), the Sunyaev-Zel’dovich (SZ) effect (Alonso et al. 2018), to baryon acoustic oscillations (BAO) (Kitaura et al. 2016), the Alcock-Paczynski (AP) effect (e.g., Sutter et al. 2012, 2014b; Hamaus et al. 2014c, 2016; Mao et al. 2017; Correa et al. 2019) and redshift-space distortions (RSD) (e.g., Paz et al. 2013; Hamaus et al. 2015, 2017; Cai et al. 2016; Achitouv et al. 2017; Hawken et al. 2017). Moreover, the intrinsically low-density environments that cosmic voids provide make them ideal testbeds for theories of modified gravity. It has been shown that Chameleon models predict repulsive and stronger fifth forces inside voids, such that the abundance of large voids can be much higher and their central density lower than in \(\Lambda \) CDM (Li et al. 2012; Clampitt et al. 2013; Zivick et al. 2015; Cai et al. 2015; Falck et al. 2015; Achitouv et al. 2018; Perico et al. 2019). Thus, gravitational lensing by voids opens up the possibility to probe the distribution of mass inside those low-density environments (Krause et al. 2013; Higuchi et al. 2013) and furnishes a promising tool to test modified gravity (Barreira et al. 2015; Baker et al. 2018).

However, ‘generic low-density regions in the Universe’ is far from a precise definition of cosmic voids. There is no unique prescription of how to determine the boundary of such regions, especially when considering sparsely distributed tracers of the large-scale structure, such as galaxies, to identify voids (Sutter et al. 2014a). A considerable number of void finding algorithms based on different operative void definitions have been developed and tested over the last decade. To name a few, Padilla et al. (2005) introduced a method to identify spherical volumes with particle-density contrasts below a particular threshold, Lavaux & Wandelt (2010) use Lagrangian orbit reconstruction and Ricciardelli et al. (2013) exploit the velocity divergence of tracer fields to obtain a dynamical void definition. Another popular method involves Voronoi tessellations of tracer particles to construct density fields, combined with the watershed transform to define a void hierarchy (Platen et al. 2007; Neyrinck 2008; Sutter et al. 2015). Furthermore, Delaunay tessellations have been used to identify empty spheres in tracer distributions (Zhao et al. 2016). Colberg et al. (2008) compared a total of 13 void finders identifying voids from the Millennium simulation. More recent studies by Cautun et al. (2018) and Paillas et al. (2019) compared various void definitions, focussing on their potential to differentiate between either Chameleon-, or Vainshtein-type modified gravity and \(\Lambda \) CDM via weak lensing. But not only discrete tracer distributions have been considered for this purpose, as demonstrated by Davies et al. (2018, 2019) using weak-lensing maps and by Krolevski et al. (2018) using the Lyman-\(\alpha \) forest to identify voids.

Most of the above void finders have either been applied to simulations, or galaxy survey data with spectroscopic redshifts (spec-z), where the precise positions of tracers are available in 3D. However, spectroscopic surveys like 2dF (Colless et al. 2001) or BOSS (Dawson et al. 2013) are expensive in terms of observational time. The resulting galaxy catalogues typically contain less objects than the ones obtained with photometric surveys and may further suffer from selection effects, incompleteness and limited depth. Conversely, photometric surveys like HSC (Miyazaki et al. 2012), KiDS (de Jong et al. 2013) or DES (Flaugher et al. 2015; Dark Energy Survey Collaboration et al. 2016), which are more efficient, more complete and deeper, can only provide photometric redshifts (photo-z) that are less precise. Therefore, in order to use photo-z galaxies as void tracers, the redshift dispersion along the line of sight (LOS) must be dealt with very carefully.

Because of this limitation, void finders for the identification of circular under-densities in 2D projected galaxy maps have been the preferred choice in weak-lensing studies on cosmic voids (Clampitt & Jain 2015; Sánchez et al. 2017). For example, Sánchez et al. (2017) employed a technique that splits the sample of tracer galaxies into 2D tomographic photo-z bins with a width of at least twice the typical photo-z scatter. These projected maps are then used to identify voids in 2D as lenses, and to measure the tangential shear of the background galaxies as a function of their projected distance to the void centres. A related approach has used projections of the entire photo-z distribution to study troughs in the so obtained 2D density map (Gruen et al. 2016, 2018; Friedrich et al. 2018; Brouwer et al. 2018), Gruen et al. (2016) and Brouwer et al. (2018) also study 2D voids tomographically, by splitting the tracer galaxies into two redshift bins and defining troughs as a function of redshift.

In this work, we explore the impact of photo-z scatter on watershed-type void finders in 3D, both for the measurement of projected two-point correlations between voids and galaxies, as well as for weak-lensing imprints from voids. Based on hydrodynamical simulations, recent work by Pollina et al. (2017) has shown that these two statistics are closely connected to each other. They find that the tracer-density contrast around voids can be related to the void matter-density profile (which is responsible for gravitational lensing) by a single multiplicative constant \(b_{\text{shape}} \) that coincides with the large-scale linear tracer bias for the largest voids in the measurement; for smaller voids this constant attains higher values, but remains independent of scale. The same conclusion has recently been drawn regarding the relative bias between clusters and galaxies around voids in Pollina et al. (2019), who partly analyzed the same data that are used in this work.

Understanding the tracer bias around voids is crucial for many other cosmological tests involving voids, for example when modeling their abundance (Jennings et al. 2013; Chan et al. 2014; Pisani et al. 2015; Achitouv et al. 2015; Ronconi & Marulli 2017; Ronconi et al. 2019; Contarini et al. 2019; Verza et al. 2019), or RSDs (Hamaus et al. 2015, 2016, 2017; Cai et al. 2016; Chuang et al. 2017; Achitouv et al. 2017; Hawken et al. 2017; Achitouv 2019; Correa et al. 2019). Thanks to the state-of-the-art DES Year 1 (Y1) shear catalogue (Zuntz et al. 2018), we have access to the lensing signal by both 2D and 3D voids with unprecedented accuracy. This enables us to test the linearity of tracer bias around voids by comparing their mass- and galaxy-density profiles, and whether it is affected by the choice of void definition.

This paper is organised as follows: in Section 2 we describe the data and mocks used for this work, in Section 3 we briefly introduce the employed void finding algorithms (both 2D and 3D). Section 4 outlines our methods for obtaining galaxy-density and weak-lensing profiles from the available data. In Section 5 the detailed measurements are presented and tests on the impact of photo-z scatter on our results from 3D voids are performed. We further discuss the relation between void density profiles from galaxy clustering and weak lensing, and examine the behaviour of galaxy bias around voids. Finally, we summarize our results in Section 6.

2 DATA AND MOCKS

The Dark Energy Survey (DES) is a photometric survey that has recently finished observing 5000 sq. deg. of the southern hemisphere to a depth of \(r > 24 \), imaging about 300 million galaxies in 5 broadband filters (grizY) up to redshift \(z = 1.4 \). In this work, we use data from a large contiguous region of 1321 sq. deg. of DES
Y1 observations, reaching a limiting magnitude of about 23 in the r-band (with a mean of 3 exposures out of the planned 10 for the full survey).

2.1 Void tracer galaxies

The tracer galaxies used to identify voids in this work are a subset of the DES Y1 Gold catalogue (Drlica-Wagner et al. 2018) selected by redMaGiC (red-sequence Matched-filter Galaxy Catalogue, Rozo et al. 2016), an algorithm used to provide a sample of Luminous Red Galaxies (LRGs) with excellent photo-z performance. It obtains a median bias of \(\Delta z_{\text{spec}} - \Delta z_{\text{photo}}\) of 0.005, and a scatter of \(\Delta z / (1 + z) \approx 0.0166\). The redMaGiC algorithm selects galaxies above some luminosity threshold based on how well they fit a red-sequence template that is calibrated using redMaPPer (Rozo et al. 2015) and a subset of galaxies with spectroscopic redshifts (see Rozo et al. 2016, for a list of external survey data used). The cutoff in the goodness of fit to the template is imposed as a function of redshift and adjusted such that a constant comoving density of galaxies is maintained.

In Pollina et al. (2019), both redMaGiC galaxies, as well as redMaPPer clusters have been considered as void tracers. Although clusters ensure a more robust void identification (more specifically, the void-size function identified by clusters has been shown to be significantly stronger lensing signal than voids traced by galaxies, allowing access to deeper voids in the matter-density field, and partly a selection bias in the void sample caused by LOS smearing in photometric redshifts.

2.2 Lensing source catalogue

For measuring image distortions caused by gravitational lensing we use metacalibration (Huff & Mandelbaum 2017; Sheldon & Huff 2017), a recently developed method to accurately measure weak-lensing shear without using any prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to the distorted image. It can be applied to any shear estimation pipeline. For the catalogue used in this work it has been applied to the ngmix pipeline (Sheldon et al. 2014), which uses sums of Gaussians to approximate galaxy profiles in the riz bands to measure the ellipticities of galaxies (Zuntz et al. 2018). Multiband (griz) photometry is used to estimate the galaxy redshifts in DES. A modified version of the Bayesian Photometric Redshifts (BPZ) code is applied on measurements of multiband fluxes to obtain the fiducial photometric redshifts used in this work (see Hoyle et al. (2018) and Drlica-Wagner et al. (2018) for more details). We ignore systematic errors in the source redshift calibration, which is justified by the significance of our measurements and the small calibration uncertainties. The final metacalibration catalogue consists of 35 million galaxy shape estimates up to photometric redshift \(z = 2\). We have only used source galaxies with mean redshifts higher than 0.55 in this study.

2.3 Mocks

Aside from the data samples presented above, the redMaGiC algorithm has also been run on a mock catalogue from the MICE2 simulation project. The MICE Grand Challenge (MICE-GC Fosalba et al. 2015b) is an all-sky lightcone N-body simulation evolving 4096^3 dark-matter particles in a (3 Gpc/h)^3 comoving volume, assuming a flat concordance ΛCDM cosmology with \(\Omega_m = 0.25\), \(\Omega_{\Lambda} = 0.75\), \(\Omega_b = 0.044\), \(n_s = 0.95\), \(\sigma_8 = 0.8\) and \(h = 0.7\). The resulting mock catalogue includes extensive galaxy and lensing properties for ~200 million galaxies over 5000 sq. deg. up to a redshift \(z = 1.4\) (Croccolo et al. 2015; Fosalba et al. 2015a; Carretero et al. 2015). Photometric redshift errors and error distributions are modelled according to the redMaGiC algorithm by fitting every synthetic galaxy to a red-sequence template (Rozo et al. 2016). The simulated dark matter lightcones are divided into sets of all-sky concentric spherical shells. Instead of applying a computationally expensive ray-tracing algorithm, the all-sky lensing maps are approximated by a discrete sum of projected 2D dark matter density maps multiplied by the appropriate lensing weights.

3 VOID FINDERS

In this section we introduce the void finding algorithms applied to DES data and mocks. As briefly mentioned above, we employ one void finder that traces voids in 2D projections of the tracer-density field (2D voids), and a second one that identifies voids in all three dimensions (3D voids).

3.1 2D Voids

We employ the 2D void finding algorithm described in Sánchez et al. (2017), which is similar to that used by Clampitt & Jain (2015). This void finder identifies under-densities in 2D galaxy-density fields, which are constructed by projecting galaxies in redshift slices. We use relatively thick redshift shells of width 100 Mpc/h to minimize the effect of photo-z scatter. This choice has proven to be optimal in previous studies, because it amounts to at least twice the typical photo-z scatter in DES. The algorithm implements the following steps (see Sánchez et al. 2017, for more details):

(i) It projects tracer galaxies in a redshift slice of given thickness into a HEALpix map (Górski & Hivon 2011). The setting is kept the same as in Sánchez et al. (2017): \(N_{\text{side}} = 512\), which corresponds to an angular resolution of 0.1 deg.

(ii) For each slice, it divides the map by its mean tracer density and subtracts unity to obtain a density-contrast map. The latter is then smoothed with a Gaussian filter with comoving smoothing scale \(\sigma_g = 10\) Mpc/h.

(iii) The most underdense pixel in the smoothed map of each slice is identified as the first void centre. Then a circle of radius \(R_v\) is grown around the void centre until the density inside it reaches the mean density.

(iv) All pixels within this circle are now removed from the list of potential void centres. Steps (iii) and (iv) are repeated until all pixels below some density threshold have either been identified as a void centre, or removed.
3D Voids

In order to identify voids in 3D, we use the publicly available Void IDentification and Examination toolkit (vide, Sutter et al. 2015), which is a wrapper for an enhanced version of ZOOnes Bordering On Voidness (zovn, Neyrinck 2008). vide provides functionality for the identification of voids from real observations, while zovn was originally intended for void-finding in simulations with periodic boundary conditions. The algorithm can be summarized by the following steps:

(i) A Voronoi tessellation is applied to the entire tracer distribution in 3D. This procedure assigns a unique Voronoi cell around each tracer particle, delineating the region closer to it than to any other particle. The density of any location in each cell is calculated as the inverse of its cell volume.

(ii) Density minima in the Voronoi density field are found. A density minimum is located at the tracer particle with a Voronoi cell larger than all its adjacent cells.

(iii) Starting from a density minimum, the algorithm joins together adjacent cells with increasing density until no higher-density cell can be found. The resulting basins are denoted as zones, local depressions in the density field.

(iv) A watershed transform (Platen et al. 2007) is performed to join zones into larger voids, and to define a hierarchy of voids and sub-voids. To prevent voids from growing into very overdense structures, we set a density threshold above which the merging of two zones is stopped (Neyrinck 2008); the ridge between any two zones has to be lower than 20% of the average tracer density.

(v) Each void is assigned an effective radius R_v of a sphere of the same total void volume. Void centres are defined as volume-weighted barycentres of all Voronoi cells that make up each void.

3.3 Void catalogues

Applying the void finding algorithms to the DES Y1 redMaGiC sample of galaxies, we find a total of 443 2D voids and 4754 3D voids between $z = 0.2$ and $z = 0.6$. We discard voids outside this range to avoid the redshift boundaries of the redMaGiC sample. Figure 1 shows the effective void radius distributions for both void catalogues. Note that the two void samples are not expected to yield similar size distributions, due to their different definition criteria. We divide each catalogue into 3 sub-samples based on the effective radius. For 2D voids we define three bins: $R_v = 20 - 40$ Mpc/h, $R_v = 40 - 60$ Mpc/h, and $R_v = 60 - 120$ Mpc/h. For 3D voids we define three bins: $R_v = 10 - 20$ Mpc/h, $R_v = 20 - 30$ Mpc/h, and $R_v = 30 - 60$ Mpc/h. Each bin of increasing R_v has 267, 100, and 76 voids. For 3D voids we also define six bins: $R_v = 10 - 20$ Mpc/h, $R_v = 20 - 30$ Mpc/h, $R_v = 30 - 60$ Mpc/h, and $R_v = 60 - 120$ Mpc/h. Each bin of increasing R_v has 2214, 1873, 667, and 4754 voids (see Table 1 for a summary).

4 METHODOLOGY

With the void catalogues at hand, we are ready to measure the tangential shear, as well as the galaxy density contrast around voids in DES. A measurement of the lensing signal allows us to validate the ability of the employed void finders to identify underdense regions in the matter distribution of the Universe. It furthermore provides us with the necessary information to constrain the radial mass-density profiles of voids. In this section, we present our methodology for obtaining the lensing measurement, an estimate of its covariance, and the measurement of the clustering signal of galaxies around voids.

4.1 Lensing around voids

The tangential shear γ_t of background galaxies (sources) induced by voids (lenses) is a direct probe of the excess surface mass density $\Delta \Sigma$ around voids, defined as

$$\Delta \Sigma(r_p/R_v) = \Sigma(<r_p/R_v) - \Sigma(r_p/R_v) = \Sigma_{\text{crit}} \gamma_t(r_p/R_v),$$

where

$$\Sigma(<r_p) = \frac{2}{r_p} \int_0^{r_p} \Sigma(r_p') \, dr_p'$$

is the average surface mass density enclosed inside a circle of projected radius r_p from the void centre. Distances are expressed in...
units of effective void radius R_v and the critical surface mass density is given by

$$\Sigma_{\text{crit}} = \frac{c^2}{4\pi G D_A(z_l)D_A(z_s)}.$$ (3)

with comoving angular diameter distance D_A and the lens and source redshifts z_l and z_s, respectively. Note that $\Sigma_{\text{crit}}^{-1}(z_l, z_s) = 0$ for $z_s < z_l$. All distances and densities are given in comoving coordinates assuming a flat ΛCDM cosmology with $\Omega_m = 0.30$ (for the mocks we use the input cosmology with $\Omega_m = 0.25$). We apply inverse-variance weights (Sheldon et al. 2004; Mandelbaum et al. 2013) and follow the approach of McClintock et al. (2019) to estimate our lensing observable via

$$\langle \Delta \Sigma_{\text{ls}}^{{\gamma}(\gamma)}(r_p/R_v) \rangle = \frac{\sum_i \sum_j \Delta \Sigma^{-1}_{\text{ls}}(z_l, z_s) Y_{\gamma}(z_l, z_s) Y_{\gamma}(z_j, z_s)}{\sum_i \sum_j \Delta \Sigma_{\text{ls}}^{-1}(z_l, z_s)} \{ \langle R_{\text{f}} \rangle, \langle \Delta \Sigma \rangle \}$$ (4)

where $\gamma(\gamma)$ denotes the two possible components of the shear: tangential and cross. The sum runs over all lens-source pairs i and in the radial bin r_p/R_v, and we require the mean of the source photo-z distribution per galaxy to obey $\langle z_l \rangle > z_s + 0.15$. Note for the DES Y1 data, we are using the METACALIBRATION shear catalogue (Huff & Mandelbaum 2017; Sheldon & Huff 2017), so we need to apply response corrections, namely the shear response R_p and selection response R_{sel} to the shear statistics as described in McClintock et al. (2019). In essence we stack the excess surface mass densities of all voids within the redshift range of $0.2 \leq z_s \leq 0.6$ to obtain an average $\Delta \Sigma$ profile at an effective lens redshift of $\langle z_l \rangle = 0.46$. This is a reasonable approximation, given that the density profile of voids in simulations does not evolve much within the considered redshift range (Hamaus et al. 2014a).

4.2 Covariance estimation

To estimate the covariance of our lensing measurement, we perform a void-by-void jackknife resampling technique as described in Sánchez et al. (2017). We therefore repeat our measurement N_v times (the number of voids in our sample), each time omitting one void in turn to obtain N_v jackknife realizations. The covariance of the measurement is therefore given by

$$C(\Delta \Sigma_i, \Delta \Sigma_j) = \frac{N_v - 1}{N_v} \sum_{k=1}^{N_v} \left(\Delta \Sigma_i^k - \langle \Delta \Sigma_i \rangle \right) \left(\Delta \Sigma_j^k - \langle \Delta \Sigma_j \rangle \right).$$ (5)

where $\Delta \Sigma_i^k$ denotes the excess surface mass density from the k-th jackknife realization in the i-th radial bin, with a mean

$$\langle \Delta \Sigma_i \rangle = \frac{1}{N_v} \sum_{k=1}^{N_v} \Delta \Sigma_i^k.$$ (6)

The signal-to-noise ratio (SNR) for our lensing measurement can be calculated as (Becker et al. 2016)

$$S/N = \frac{\sum_{i,j} \Delta \Sigma_{\text{data}}^i \Delta \Sigma_{\text{model}}^j}{\sqrt{\sum_{i,j} \Delta \Sigma_{\text{data}}^i \Delta \Sigma_{\text{data}}^j \Sigma_{\text{model}}^j}},$$ (7)

where i,j are indices for the N_{bin} radial bins of the measured excess surface mass density $\Delta \Sigma_{\text{data}}$ with model expectation $\Delta \Sigma_{\text{model}}$ (see section 5.1.2 below), and C^{-1} is an estimate of its inverse covariance matrix including the Hartlap correction factor (Hartlap et al. 2007).

4.3 Galaxy clustering around voids

Apart from their ability to act as gravitational lenses due to their low matter content as compared to the mean background density, voids are also underdense in terms of galaxies. In fact, this property is used for their definition in the first place. It is therefore interesting to extract the average radial galaxy distribution around voids, and to compare it to the lensing signal. The stacked galaxy-density profile around voids is equivalent to the void-galaxy cross-correlation function in 3D (e.g., Hamaus et al. 2015).

$$\xi_{\text{vg}}^{3D}(r_p) = \frac{n_{\text{vg}}(r_p)}{\langle n_{\text{g}} \rangle} - 1,$$ (8)

where $n_{\text{vg}}(r_p)$ is the density profile of galaxies around voids at distance r (in 3D), and $\langle n_{\text{g}} \rangle$ the mean density of tracers at a given redshift. Gravitational lensing, however, provides the projected surface mass density along the LOS, as defined in equation (1). For a more direct comparison it is therefore instructive to project all galaxies along the LOS and to measure the 2D void-galaxy correlation function instead,

$$\xi_{\text{vg}}^{2D}(r_p) = \frac{\Sigma_{\text{vg}}(r_p)}{\langle \Sigma_{\text{g}} \rangle} - 1,$$ (9)

where $\Sigma_{\text{vg}}(r_p)$ is the projected surface density of galaxies around void centres at projected distance r_p, and $\langle \Sigma_{\text{g}} \rangle$ is the mean projected surface density of galaxies in the redshift slice.

In order to estimate the 2D void-galaxy cross-correlation function from the data we have to take into account the survey geometry. This can be achieved with the help of a random galaxy catalogue with the same mask and selection function as the original galaxy sample, albeit a higher density of unclustered objects. With that the Davis & Peebles estimator (Davis & Peebles 1983) provides the projected excess-probability of finding a void-galaxy pair, i.e. the 2D void-galaxy cross-correlation function, via

$$\xi_{\text{vg}}^{2D}(r_p) = \frac{N_v \Sigma_{\text{vg}}(r_p)}{N_{\text{g}} \Sigma_{\text{g}}(r_p)} - 1,$$ (10)

where N_{g} and N_v are the total numbers of galaxies and randoms, respectively, and $\Sigma_{\text{vg}}(r_p)$ is the projected 2D surface-density of randoms around the same voids. We have also tested the Landy & Szalay estimator (Landy & Szalay 1993) and found negligible differences to using equation (10).

5 MEASUREMENTS

In this section we present measurements of lensing and clustering around 2D and 3D voids in DES Y1 data. With the help of the MICE2 mocks we first investigate the impact of photo-z scatter on the observables.

5.1 Lensing

5.1.1 MICE2 mocks

The black points in figure 2 represent the excess surface mass density profiles inferred via equation (4) using the tangential component of shear from a weak-lensing measurement around a subsample of our 3D voids from the MICE2 mocks. To determine the impact of photo-z scatter on the observables, we validate our pipeline on the MICE2 mocks by exchanging photometric with spectroscopic redshift estimates, which are known in the simulated galaxy catalogue.
Hence, we repeat our entire measurement including the void identification step with \(v_{\text{pec}} \). For the 2D voids the impact of photo-z scatter has already been investigated in Sánchez et al. (2017), and we have adopted a projection width of sufficient size to minimize its impact. Figure 2 shows a comparison of excess surface density profiles inferred via weak lensing by 3D voids found in spec-z (red) and photo-z (black) redMaGiC mocks in MICE2.

Figure 3. Stack of the true positions (spec-z’s) of MICE2 redMaGiC galaxies around the centres of 3D voids that have been identified using photo-z’s of the same mock galaxies. The colour coding reflects the excess density of galaxies, \(n_{\text{perc}}/(\langle n_{\text{perc}} \rangle - 1) \), as a function of the void-centric distances along \((r_{\parallel}) \) and perpendicular \((r_{\perp}) \) to the LOS. As discussed in section 5.1.1, the stack gives a misleading impression of void elongation due to photo-z scatter.

A possible origin for this difference is due to the ‘smearing’ of galaxies along the LOS in photometric space. This causes under-densities that are elongated along the LOS to be more likely identified as voids, whereas structures oriented perpendicular to the LOS may get smoothed out more easily (Granett et al. 2015; Kovács et al. 2017). Light passing along an elongated void gets deflected more, hence the stronger lensing signal. By means of the MICE2 mocks, which provide both photo-z and spec-z information, we may directly test this conjecture. In particular, we stack the redMaGiC galaxy positions based on their spectroscopic redshifts around the centres of 3D voids that have been identified in the corresponding photo-z galaxy distribution. This stack is performed in two directions, along and perpendicular to the LOS, to isolate the smearing effect. The result is presented in figure 3, featuring a very significant LOS elongation with an axis ratio of about 4.

This does not imply that every individual void exhibits such an extreme stretch. Rather, photo-z smearing breaks isotropy in the distribution of detected voids, which are more likely to be aligned with the LOS. Stacking such a distribution of aligned voids with varying shapes smears out their boundaries along the LOS and results in a very elongated average profile shape. We have verified that the distribution of void elongations is only marginally affected by photo-z scatter, so the 3D nature of our \(v_{\text{pec}} \) void samples is preserved. This is demonstrated in the top panel of figure 4, where we plot the normalized distribution of void elongations defined via the ratio \(\lambda_{\text{max}}/\lambda_{\text{min}} \), the largest and the smallest eigenvalue of each void’s inertia tensor (see Sutter et al. 2014a, for more details on the variance-covariance matrix and the inertia tensor of voids).
Figure 5. Excess surface mass density profiles inferred via weak-lensing tangential shear by stacking all 2D (left) and 3D (right) voids identified in DES Y1 data (black points). The cross components of shear are depicted as blue crosses. Error-bars represent 1σ confidence intervals obtained via jackknife resampling of the void catalogues. Red dashed lines show the fits of equation (11) to the data, with best-fit parameters and corresponding reduced chi-square values shown in each panel.

Figure 6 shows the corresponding covariance matrices for $\Delta \Sigma (r_p)$ calculated via equation (5) and normalized by their diagonals.

In order to establish a quantitative comparison to existing results in the literature, we consider the void density profile function of Hamaus et al. (2014a, HSW),

$$\frac{\rho_v(r)}{\rho_0} - 1 = \delta_c \left(\frac{1 - (r/r_s)^\alpha}{1 + (r/R_v)^\beta} \right),$$

which has been shown to accurately describe the density fluctuations around voids in both simulations and observations (e.g., Hamaus et al. 2014a, 2016; Sutter et al. 2014a; Barreira et al. 2015; Pollina et al. 2017, 2019; Falck et al. 2018; Perico et al. 2019). Equation (11) has 4 free parameters: a central void under-density δ_c, a scale radius r_s (typically expressed in units of R_v), and two slopes α and β. This function does not account for on average anisotropic void profiles, which are preferentially obtained by void finders operating on photometric redshifts (see above). We nevertheless use it as a template to describe an effective, spherically symmetric density profile with the same excess surface mass density when projected along the LOS.

For each of our void samples, we perform a 4-parameter fit of equation (11) to the observed excess surface mass densities via a Monte Carlo Markov Chain (MCMC). For this we need to convert
Figure 6. Covariance matrices of $\Delta \Sigma(r_p)$ for 2D (left) and 3D void samples (right), normalized by their diagonal.

Figure 7. Lensing profiles for 2D voids in DES data, similar to the right panel of figure 5, but here the voids are divided into three different radius bins. The red dashed lines show the fits of equation (11) to the data, with best-fit parameters shown in each panel legend.

Figure 8. Lensing profiles for 3D voids in DES data, similar to the right panel of figure 5, but here the voids are divided into three different radius bins. The red dashed lines show the fits of equation (11) to the data, with best-fit parameters shown in each panel legend.

the 3D density $\rho(r)$ to a surface mass density $\Sigma(r_p)$ via (Pisani et al. 2014)

$$\Sigma(r_p) = \int \rho \left(\sqrt{r_z - D_A(z)} \right)^2 + r_p^2 \right) dr_z ,$$

where the void lenses are located at redshift z_l and we integrate up to a distance of $10R_v$ away from the void centre along the LOS coordinate r_z. The best-fit HSW-profiles are shown as dashed lines in figures 5, 7 and 8. The agreement with the data is striking in most cases, except for the largest void radius bins. However, this is the most noisy regime of our data with the fewest voids, featuring a double-dip in the excess surface mass density profile that cannot
be reproduced with equation (11). A possible origin could be the presence of prominent sub-structures that do not average out in a void stack with limited statistics. The reduced chi-square values are shown in each panel of figures 5, 7 and 8, calculated as

$$\chi^2_{\text{red}} = N_{\text{dof}}^{-1} \sum_{i,j} \left(\Delta \Sigma_i^{\text{data}} - \Delta \Sigma_i^{\text{model}} \right) C^{-1}_{ij} \left(\Delta \Sigma_j^{\text{data}} - \Delta \Sigma_j^{\text{model}} \right),$$

(13)

where the number of degrees of freedom is $N_{\text{dof}} = N_{\text{bin}} - 4$.

An example contour plot of the MCMC posterior probability density function (PDF) for 3D voids of radii $20 - 30$ Mpc/h is shown in figure 9. The values of the HSW-profile parameters at the maximum of the PDF are in excellent agreement with N-body simulation results (cf. figure 2 of Hamaus et al. 2014a) and provide an accurate inference of the distribution of dark matter inside our observed void samples. However, it should be kept in mind that the parameters of equation (11) describe a spherically symmetric density profile, whereas our voids tend to be oriented along the LOS. Therefore, our fits should be understood as constraints on the spherically symmetric equivalent of the anisotropic void density profile, which causes the same lensing imprint. This implies that the central under-density of our voids is less negative than the best-fit values we obtain for δ_c, as evident from figure 3. This also explains why the lower boundary of $\delta_c = -1$ is encountered in some cases.

Figure 10 presents the corresponding 3D void density profile of equation (11) evaluated for all the posterior parameter values sampled in our MCMC from figure 9, so regions of higher density correspond to a higher probability. This measurement can in principle be used to compare predictions from competing models of dark matter and gravity (e.g., Barreira et al. 2015; Yang et al. 2015; Baker et al. 2018). We note, however, that the effect of anisotropic void selection due to the impact of photo-z scatter will need to be modelled in order to fully interpret the inferred 3D density profile.

5.2 Lensing and Clustering

With the inferred matter distribution around voids from our catalogues at hand, we may now directly compare this with the corresponding distribution of galaxies around the same voids. Because the lensing data provide us with projected excess surface mass densities $\Delta \Sigma(r_p)$, we measure the corresponding quantity for the clustering of galaxies, namely the excess surface galaxy density $\Delta \Sigma_g(r_p) \equiv \Sigma_g(< r_p) - \Sigma_g(r_p)$. With the use of equation (9) we can write $\Sigma_g(r_p)/\Sigma_g(\infty) = \xi^{2D}(r_p) + 1$, and thus

$$\frac{\Delta \Sigma_g(r_p)}{\Sigma_g(\infty)} = \frac{\xi^{2D}(< r_p) - \xi^{2D}(r_p)}{\xi^{2D}(\infty)}.$$

(14)

Now, following Pollina et al. (2017), we may relate the 3D void-galaxy and void-matter cross-correlation functions via a single bias parameter b_{slope}.

$$\xi^{3D}_{vg}(r) = b_{\text{slope}} \xi^{3D}_{vm}(r).$$

(15)

Because b_{slope} is a scale-independent constant, the same relation holds for the projected correlation functions ξ^{2D} and thus also for $\Delta \xi^{2D}$. Therefore, we have

$$\frac{\Delta \Sigma_g(r_p)}{\Sigma_g(\infty)} = \Delta \xi^{2D}(r_p) = \xi^{2D}(\infty) - \xi^{2D}(r_p) = b_{\text{slope}} \frac{\Delta \Sigma(r_p)}{\Sigma(\infty)}.$$

(16)

Note that the validity of this equation is compromised in the case there is a significant redshift evolution in both b_{slope} and the void density profile. However, there is no evidence for redshift dependence in the bias of the redMaGiC sample inferred via galaxy-galaxy lensing in DES (Prat et al. 2018). Also the void density profile evolves very little in the considered redshift range in simulations (Hamaus et al. 2014a), so we may safely neglect redshift-evolution effects here.

In practice, we measure the quantity $\xi^{2D}_{vg}(r_p)$ via equation (10) and the quantity $\Delta \Sigma(r_p)$ via equation (4). Because equation (4) involves redshift-dependent inverse-variance weights, but equation (10) does not, the ratio of the quantities $\xi^{2D}_{vg}(r_p)$ and $\Delta \Sigma(r_p)$ can be biased. This bias would be absorbed by b_{slope} in equation (16), resulting in a wrong value. In order to account for this difference, we repeated the measurement of ξ^{2D}_{vg} applying the same weights as for the estimator in equation (4). We find consistent results with and without weights, with differences far below our measurement.
Figure 11. Comparison of $\Delta \Sigma(r_p)$ profiles from weak lensing (black dots with error bars) and projected galaxy-density profiles $\Delta \xi_2^D(r_p)$ (green area) around 3D voids of different size in MICE2 redMaGiC mocks. $\Delta \Sigma(r_p)$ has been rescaled by an overall amplitude c_{slope} to yield a best match with $\Delta \xi_2^D(r_p)$. The first data point of $\Delta \xi_2^D$ has been fixed to a value of zero and is not used in the fit.

Figure 12. Same as figure 11 for 3D voids in DES Y1 data.

Figure 13. Same as figure 11 for 2D voids in DES Y1 data.
accuracy. For this reason, we omit any weighting scheme for the estimator in equation (10).

Comparing the measurements of $\Delta \Sigma_{vG}^2 (r_p)$ and $\Delta \Sigma (r_p)$ allows us to test the linearity of equation (15) via equation (16). In particular, the ratio $\Delta \Sigma_{vG}^2 / \Delta \Sigma$ should be independent of the projected radius r_p, with a constant value

$$c_{\text{slope}} \equiv \frac{b_{\text{slope}}}{\langle \Sigma \rangle}. \quad (17)$$

Taking the ratio of measured quantities that are subject to noise is sub-optimal and can lead to noise bias. To avoid this, we use an MCMC approach to robustly infer a constant c_{slope} relating $\Delta \Sigma_{vG}^2 (r_p)$ and $\Delta \Sigma (r_p)$.

5.2.1 MICE2 mocks

We first test this method on 3D voids identified in the MICE2 mocks. In figure 11, both galaxy-density profiles $\Delta \Sigma_{vG}^2 (r_p)$ and lensing profiles $\Delta \Sigma (r_p)$, multiplied by the best-fit c_{slope} parameter, are shown for the following void-radius bins: $R_v \in [20, 30], [30, 60], [60, 120]$ Mpc/\h. We omit showing small voids whose effective radius is close to the mean galaxy separation of the redMaGiC sample (~ 10 Mpc/\h). For those voids the excess void-galaxy correlation function $\Delta \Sigma_{vG}^2 (r_p)$ may switch sign inside the void radius $r_p < R_v$ and turn positive. This is a sampling artefact caused by voids that are defined by only a few galaxies: their volume-weighted barycentre tends to coincide with the central Voronoi-cell of a galaxy, which causes a central overdensity in the estimate of $\Delta \Sigma_{vG}^2$. However, this artifact disappears for voids larger than ~ 30 Mpc/\h, where the correspondence between lensing and clustering becomes remarkably accurate. In fact, the radial profiles of $\Delta \Sigma (r_p)$ and $\Delta \Sigma_{vG}^2 (r_p)$ are consistent within their measurement errors everywhere, suggesting the linear relation from equation (16) between the two holds.

5.2.2 DES Y1 data

In figure 12 we present the same plots as before, but obtained from DES Y1 data. Although the statistical accuracy is lower due to the smaller sky area, the agreement between the excess surface density profiles of matter and galaxies around voids is striking. We do observe a few outliers at small projected distances in $\Delta \Sigma (r_p)$, but the overall agreement is very good within the errors. We repeat the same analysis for our 2D voids in radius bins of $[40, 60], [60, 120]$ Mpc/\h, the results are shown in figure 13. In this case the agreement between mass and light is somewhat degraded compared to the 3D voids. However, the sparsity of 2D voids results in a much noisier signal for both lensing and clustering measurements, which at least partly may explain the larger discrepancy.

With the inferred parameter $c_{\text{slope}} = b_{\text{slope}}/\langle \Sigma \rangle$ we can also estimate the value of the galaxy bias around voids, b_{slope}. For this, we need to calculate the mean comoving surface density of the Universe $\langle \Sigma \rangle$ in the relevant projected redshift range.

$$\langle \Sigma \rangle = \int_D \int_{z_{\text{max}}}^{z_{\text{min}}} \rho(z) c_H(z) dz = \int_{z_{\text{min}}}^{z_{\text{max}}} \frac{c}{H(z)} d\Omega = \frac{3 H_0^2}{8 \pi G} \int_{z_{\text{min}}}^{z_{\text{max}}} \frac{\Omega_m}{\sqrt{\Omega_m (1+z)^3} + 1 - \Omega_m} dz. \quad (18)$$

where we integrate over the entire LOS extension of the lens sample (voids in redMaGiC galaxies) from redshift $z_{\text{min}} = 0.2$ to $z_{\text{max}} = 0.6$. The resulting bias parameters b_{slope} from the different radius bins for our 3D void samples in DES Y1 data and MICE2 mocks are shown in figure 14, along with the result from the galaxy-galaxy lensing analysis by Prat et al. (2018). The inferred b_{slope} around voids is slightly higher in comparison to the large-scale estimates from Prat et al. (2018), but still consistent at the 2σ-level. Earlier analyses have already found that tracer bias can be enhanced in void environments, especially for smaller voids (Pollina et al. 2017, 2019). Moreover, in simulations the halo bias has been shown to be density dependent, with increasing values at low densities (see figure 1 in Neyrinck et al. 2014). Upcoming data from DES will allow us to more accurately probe the environmental dependence of tracer bias around voids. We have also repeated the same analysis for our 2D voids. The results are consistent with the 3D case, albeit with larger scatter, which is why we do not explicitly show them here.

6 SUMMARY AND CONCLUSION

We have measured the lensing shear and galaxy-density profiles around voids in the Year 1 data of the Dark Energy Survey, and validated our methodology using mock catalogues. The voids were identified using two different void-finding algorithms adapted to the photometric redshift accuracy of DES redMaGiC galaxies; one algorithm operated on projected 2D slices while the other used the estimated 3D positions of galaxies. We summarize our results as follows:

(i) We have presented weak-lensing measurements by voids in the galaxy distribution, revealing their underdense cores and compensation walls at the highest SNR achieved to date, up to a value of 14.0. We further divide both of our void samples into three bins in void radius and thus measure their lensing profile as a function of void size.

(ii) We have investigated the impact of photo-z scatter on our measurements from 3D voids with the help of MICE2 mocks, which provide both photometric as well as spectroscopic redshift estimates. We find that 3D voids identified in a photometric redshift catalogue...
feature enhanced lensing imprints, which can be explained by a selection bias in the watershed algorithm we employ, acting in favour of voids with elongations oriented along the LOS.

(iii) The inferred excess surface mass density profile around our 3D voids is very consistent with the equivalent density profile of on average spherically symmetric voids found in N-body simulations, and is well described by the universal density profile of equation (11). The presented methodology paves a way to infer various characteristics of voids in the full matter distribution, such as their central density. We also confirm smaller voids to be surrounded by overcompensated ridges, which disappear gradually for larger voids, as anticipated in simulation studies (e.g., Hamaus et al. 2014a; Sutter et al. 2014a; Leclercq et al. 2015).

(iv) In order to study the relationship between mass and light around voids, we have compared galaxy-density profiles with lensing profiles. We find a linear relationship between the mass distribution and the galaxy distribution around voids with effective radii above ~ 30 Mpc$/h$, as described by equation (16). For smaller voids deviations arise close to the void centre due to sparse sampling effects. This is consistent with voids identified from hydrodynamical simulations, where the void-centric density profiles of galaxies and dark matter were shown to exhibit a linear relation (Pollina et al. 2017). A similar linearity has also been found between galaxy- and dark matter were shown to exhibit a linear relation (Pollina et al. 2017).

(v) A quantitative comparison of mass and light around our voids enabled us to constrain the bias of the tracer galaxies used, namely the redMaGiC sample. We find slightly higher values compared to large-scale results from the galaxy-galaxy lensing analysis of Prat et al. (2018), albeit with larger uncertainties. An enhanced tracer bias around voids has already been found in Pollina et al. (2017) and may be related to the environmental dependence of tracer bias. However, a thorough investigation of this effect requires higher statistical accuracy.

The statistical accuracy of the presented results is expected to grow with the improved sky coverage and depth in subsequent DES data releases. Data from planned galaxy surveys of the near future, such as LSST (LSST Science Collaboration et al. 2009), Euclid (Laureijs et al. 2011), and WFIRST (Spergel et al. 2013) will further improve the situation. There are several applications of our method. For example, the existence of fifth forces in theories of modified gravity can affect both the mass profile and, for given mass profile, the lensing signal (Cai et al. 2015; Cautun et al. 2018; Barreira et al. 2015; Baker et al. 2018). The inference of central void densities, as well as the linearity between mass and light around void centres can therefore provide a consistency test of GR. Another example concerns the nature of dark matter and the impact of massive neutrinos on voids. Warm or hot dark-matter particles (massive neutrinos) have a different distribution in voids than cold dark matter, which makes their relative abundance inside voids higher than elsewhere in the cosmos (Yang et al. 2015; Massara et al. 2015; Banerjee & Dalal 2016; Kreisch et al. 2019; Schuster et al. 2019). Similar arguments apply for tests of potential couplings between dark matter and dark energy (Pollina et al. 2016). While these tests require much higher precision measurements, the methodology developed in our study may stimulate further theoretical explorations for signatures of new physics in voids.

The apparent linear relationship between mass and light in our data suggests the physics of void environments to be remarkably simple. Similar conclusions have already been drawn concerning the dynamics in voids, probed via redshift-space distortions (Hamaus et al. 2015, 2016, 2017; Cai et al. 2016; Achitouv et al. 2017; Hawken et al. 2017). The combination of dynamical measurements from spectroscopic redshifts and the lensing mass profiles presented here is a promising probe of cosmology and gravity. It motivates further methodology for identifying and characterizing voids in spectroscopic and high-quality photometric surveys (Pisani et al. 2019).
The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science. Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

REFERENCES

Achitouv I., 2016, Phys. Rev. D, 94, 103524

DES Y1 void lensing

13