Why is the antipodal effect in closo-1-SB9H9 so large? A possible explanation based on the geometry from the concerted use of gas electron diffraction and computational methods

Citation for published version:

Digital Object Identifier (DOI):
10.1039/c1dt10053j

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Dalton Transactions

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Why is the antipodal effect in closo-1-SB₉H₉ so large? A possible explanation based on the geometry from the concerted use of gas electron diffraction and computational methods†

Drahomír Hnyk,*a Derek A. Wann,b Josef Holub,a Svein Samdalc and David W. H. Rankinb

Received 12th January 2011, Accepted 17th March 2011
DOI: 10.1039/c1dt10053j

The molecular structure of 1-thia-closo-decaborane(9), 1-SB₉H₉, has been determined by the concerted use of gas electron diffraction and quantum-chemical calculations. Assuming Cᵥ symmetry, the cage structure was distorted from a symmetrically bicapped square antiprism (D₄h symmetry) mainly through substantial expansion of the tetragonal belt of boron atoms adjacent to sulfur. The S–B and (B–B)mean distances are well determined with (B–B)mean = 193.86(14) and 182.14(8) pm, respectively.

Geometrical parameters calculated using the MP2(full)/6-311++G** method and at levels reported earlier [MP2(full)/6-311G**, B3LYP/6-311G** and B3LYP/cc-pVQZ], as well as calculated vibrational amplitudes and ¹¹B NMR chemical shifts, are in good agreement with the experimental findings. In particular, the so-called antipodal chemical shift of apical B(10) (71.8 ppm) is reproduced well by the GIAO-MP2 calculations and its large magnitude is schematically accounted for, as is the analogous antipodal chemical shift of B(12) in the twelve-vertex closo-1-SB₁₁H₁₁.

Introduction

In the same way that an icosahedron represents the fundamental building block for twelve-vertex closo systems, the so-called Archimedes bicapped antiprism is known to be the building block for ten-vertex closo species. By replacing (BH)₂ vertices in the archetypal ten-vertex closo species, B₉H₁₀, with various isoelectronic moieties, a number of ten-vertex closo heteroboranes are formed in accordance with Wade’s rules. For instance, S is isoelectronic with (BH)₂ and its incorporation into this antiprismonic structure yields 1-thia-closo-decaborane(9), 1-SB₉H₉ (I), a molecule that was first synthesized many years ago.

This Cᵥ-symmetrical thiaborane has also been the subject of several structural studies. Its PES spectrum was recorded and interpreted using semiempirical quantum-chemical methods. Molecular geometries calculated using Hartree–Fock theory have subsequently been reported, as well as calculations carried out at higher levels of theory (MP2, B3LYP). These last calculations were performed in conjunction with microwave spectroscopy to determine the molecular structure of the thiaborane in the gas phase. Gas electron diffraction (GED) is similarly able to derive structures in the vapour phase and the availability of rotational constants for various isotopomers of 1-SB₉H₉ might allow these data to be introduced as restraints into the GED refinement, with the aim of enabling the determination of a particularly accurate experimental geometry. Here we determine this experimental geometry in the gas phase and compare it with that established for the dimeric derivative of the thiaborane, 2,2-(1-SB₉H₉)₂, in the solid state by X-ray diffraction.

Because the molecule possesses Cᵥ symmetry there are three signals in the ¹¹B NMR spectrum of I. The most striking feature of these resonances is the ¹¹B NMR chemical shift of atom B(10) at 71.8 ppm. To the best of our knowledge, this is the highest frequency ¹¹B chemical shift, this atom being antipodally coupled with sulfur.

The apical boron atom in the icosahedral analogue of I, 1-SB₁₁H₁₁, which is also antipodally coupled with sulfur, resonates at ca. 19 ppm. As well as determining the molecular structure of I using a combination of GED and quantum-chemical calculations, we have outlined a possible explanation of the difference between the ¹¹B(11B) values associated with the antipodally coupled boron and sulfur atoms in I and in 1-SB₁₁H₁₁.

Results and discussion

GED study

On the basis of the calculations described above, Cᵥ symmetry was assumed when writing the model describing 1-SB₉H₉. The geometry was described in terms of ten refinable parameters, comprising eight bond lengths and differences and two angles.
The four different B–B bond lengths were then described using standard deviations of the last digits.

Table 1 Refined (r_{\text{ref}}) and calculated (r_{\text{c}}) geometric parameters for 1-SB9H9 from the combined GED and ab initio refinementa,b

<table>
<thead>
<tr>
<th>Parameter</th>
<th>r_{\text{ref}}</th>
<th>r_{\text{c}}</th>
<th>Restraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{10}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{11}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{12}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{13}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{14}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Refers to an MP2(full)/6-311++G** calculation. b Distances (r) are in pm, and angles (\angle) are in degrees. See text for parameter definitions and Fig. 1 for atom numbering. The figures in parentheses are the estimated standard deviations of the last digits.

The four different B–B bond lengths were then described using the goodness of fit of the radial-distribution and difference curves as seen in Fig. 2, and the molecular-scattering intensity curves (Fig. S1†). The least-squares correlation matrix is given in Table S3† and coordinates for the final GED structure and for the calculated MP2(full)/6-311++G** structure are given in Tables S4 and S5,† respectively.

Fig. 2 Experimental radial-distribution curve and theoretical-minus-experimental difference curve for the refinement of 1-SB9H9. Before Fourier inversion the data were multiplied by $s\exp(-0.00002s^2)/(Z_\text{s} - f_s)(Z_\text{c} - f_c)$.

Rotational constants are available for several different isotopomers of 1-SB9H9, with both sulfur and boron having been isotopically substituted.4 For each of the symmetric tops 33S11B9H\textsubscript{9} (1), 33S11B9H\textsubscript{9} (2), 33S11B9H\textsubscript{9} (3) and 33S10B11B9H\textsubscript{9} (4), one rotation constant has been determined. Attempts were made to use these rotation constants as extra data in the refinements. However, it proved impossible to use the rotation constants without severely distorting the structure. This was gauged by the GIAO/MP2 calculations performed for that experimental geometry, which give for B(10) an 11B chemical shift of 80.4 ppm. Such a discrepancy between the theoretical and experimental 11B NMR chemical shifts might lead one to doubt the experimental geometry.4 In addition to that, the value is itself very close to a much less reliable GIAO/HF value (82.5 ppm) calculated for the final geometry we report. The GIAO/MP2 calculations showed that the chemical shift of the B(10) atom is very heavily reliant on the positions of the hydrogen atoms, which were not determined in the original microwave spectroscopy experiment. As a consequence, the final refinement

Fig. 1 The molecular structure, including numbering scheme, for 1-SB9H9. Hydrogen atoms are given the same number as the boron to which they are attached [e.g. H(2) is bonded to B(2)].

$p_2 = ([B(2)–B(3)] + 2\times[B(2)–B(6)] + [B(6)–B(7)] + [B(6)–B(10)])/5$

$p_3 = [B(2)–B(3)] - (2\times[B(2)–B(6)] + [B(6)–B(7)] + [B(6)–B(10)])/4$

$p_4 = [B(6)–B(7)] - (2\times[B(2)–B(6)] + [B(6)–B(10)])/3$

$p_5 = [B(6)–B(10)] - [B(2)–B(6)]$

The four different B–B bond lengths were then described using p_2 to p_5, as follows:

$B(2)–B(3) = p_2 + 4x_p/5$

$B(2)–B(6) = p_2 - p_5/5 - p_4/4 - p_3/3$

B(6)–B(7) = $p_2 - p_5/5 + 3xp_p/4$

B(6)–B(10) = $p_2 - p_5/5 - p_4/4 + 2xp_p/3$

An average B–H bond length and two differences ($p_{s, i}$) were defined as follows:

$p_{s} = ([B(10)–H] + 4\times[B(6)–H] + 4\times[B(2)–H])/9$

$p_{i} = [B(10)–H] - ([B(6)–H] + [B(2)–H])/2$

$p_{a} = [B(6)–H] - [B(2)–H]$
remarkably similar values. For example, vibrational amplitudes adjacent atom pairs and for those more widely separated have determined that amplitudes of vibration both for and to B(10)\(^{\text{a}}\).

There is a substantial expansion of the square of boron atoms adjoining sulfur, with \(\eta[B(2)–B(3)] = 194.60(23)\) pm. (In the original MW study this parameter was determined to be 193.7(1) pm\(^{1}\) and in the dimeric derivative 2,2’-(1-SB\(_{9}\)H\(_{11}\)) it is 193 pm\(^{2}\).) This expansion is more pronounced than that of the pentagonal belt of boron atoms in 1-SB\(_{11}\)H\(_{11}\),\(^{4}\) where the B–B distance determined using GED was 190.5(4) pm. The opposite trend applies to the S–B distance: 193.13(14) pm (MW: 194.4(2); the dimer: 192 pm) vs. 201.0(5) pm in 1-SB\(_{9}\)H\(_{11}\).\(^{4}\) There are slight discrepancies between GED and MW values of the B(2)–B(6) and B(6)–B(10) nearest-neighbour separations, the MW values being 176.5(3) and 170.7(1) pm, respectively. It should be noted the B(2)–B(6) and equivalent bonds connect boron atoms that are bonded to a total of eight hydrogen atoms. As these hydrogen-atom positions were not determined using the MW data this adds weight to our decision not to use the rotation constants as extra data. This speculation applies to a lesser extent to the B(6)–B(10)-type bonds [five hydrogen atoms are bonded to B(6) and its equivalent atoms and to B(10)].

Previous gas-phase studies of boron clusters with closo structures have determined that amplitudes of vibration both for adjacent atom pairs and for those more widely separated have remarkably similar values. For example, vibrational amplitudes associated with S–B and with the icosahedral body diagonal S–⋅⋅⋅B in 1-SB\(_{12}\)H\(_{12}\) were determined to be 7.1(4) and 5.8(3) pm.\(^{4}\) This similarity is also found for 1, for which \(u(S–B)\) and \(u(S–⋅⋅⋅B(10))\) refined to 7.1(3) and 6.5(3) pm, respectively. This shows that closo systems are quite rigid and the fact that the lowest calculated vibrational frequencies for 1 are higher than 300 cm\(^{-1}\) confirms this rigidity.

The final experimental geometry of 1 was computed to be 10.4 kJ mol\(^{-1}\) higher in energy than that of the theoretical structure [MP2(full)/6-311++G**]. However, a major part of this excess energy may be ascribed to the hydrogen placements; the difference in relative energy was reduced to 1.5 kJ mol\(^{-1}\) when the structure of the SB\(_{8}\) skeleton was fixed at its experimental geometry and the hydrogen positions were optimized at the MP2(full)/6-311++G** level. Both the similarity in energy and the NMR fit (as revealed in Table 2) indicate that the SARACEN electron-diffraction refinement affords a very good representation of the molecular structure of free 1-SB\(_{9}\)H\(_{11}\).

The chemical shifts calculated using coordinates that were themselves calculated at the MP2(full)/6-311++G** are considered to be the best that we have calculated and they agree extremely well with chemical shifts calculated from the final GED geometry. Two sets of experimental chemical shifts are also available for comparison.\(^{8,9}\) The values from these two NMR experiments are quite different and the reason for this difference might be based on entirely different solvents used: benzene is an aromatic solvent with magnetic anisotropy and a quadrupole moment, whereas CDCl\(_{3}\) is a polar solvent with a dipole moment. Upon moving from the aliphatic to the aromatic solvent, not negligible changes in NMR patterns were observed for some borane cages.\(^{9}\)

The \(^{11}\)B NMR chemical shift for B(10) of 74.5 ppm\(^{a}\) (shown in Table 2) and the corresponding calculated value \(76.2 \text{ ppm} \text{ (GIAO-MP2/II using MP2(full)/6-311++G** coordinates)}\) is the highest frequency chemical shift observed for this class of materials. To explain why the antipodal effect in the ten-vertex species is larger than in the twelve-vertex one (i.e. in 1-SB\(_{11}\)H\(_{11}\))\(^{4}\) we might speculate that the mechanism is the same in both cases: the occurrence of paramagnetic contributions to the magnetic shielding constants. These contributions arise from the coupling of suitable occupied and unoccupied molecular orbitals with large coefficients on the antipodal atom. The heteroatom leads to a better overlap due to polarization of the occupied MO (HOMO for 1-SB\(_{9}\)H\(_{11}\) and HOMO-2 for 1-SB\(_{11}\)H\(_{11}\), Fig. 3) towards the antipodal atom. The energetic separation between these coupled pairs of occupied and virtual MOs is larger in 1-SB\(_{9}\)H\(_{11}\) (13.8 eV at 6-31G*) than in 1-SB\(_{11}\)H\(_{11}\) (12.3 eV at the same level), which is consistent with much larger deshielding for the latter.

| Table 2 Calculated and experimental \(^{11}\)B NMR chemical shifts for 1-SB\(_{9}\)H\(_{11}\) |
|---------------------------------|--------|--------|--------|
| \(\delta^{(11)}\text{B}/\text{ppm} \) | B(2–5) | B(6–9) | B(10) |
| GIAO-MP2/II\(^{a}\) | –4.2 | –19.3 | 78.5 |
| GIAO-MP2/II\(^{b}\) | –3.7 | –19.7 | 78.7 |
| GIAO-MP2/II\(^{c}\) | –5.2 | –20.0 | 76.2 |
| GIAO-MP2/II\(^{d}\) | –4.5 | –19.6 | 76.9 |
| Exp. (in CDCl\(_{3}\))\(^{b}\) | –7.6 | –20.9 | 71.8 |
| Exp. (in C\(_{6}\)D\(_{6}\))\(^{b}\) | –4.8 | –17.6 | 74.5 |

\(^{a}\)B3LYP/cc-pVTZ. \(^{b}\)B3LYP/6-311++G**. \(^{c}\)MP2(full)/6-311+G**. \(^{d}\)GED.

Fig. 3 Key molecular orbitals for paramagnetic contributions to the shielding tensor of the antipodal boron atom: HOMO and LUMO for 1-SB\(_{9}\)H\(_{11}\) (1a and 1b, respectively) and HOMO-1 and LUMO for 1-SB\(_{11}\)H\(_{11}\) (2a and 2b, respectively). Only one of each degenerate pair is shown.

The calculated nucleus-independent chemical shift (NICS)\(^{10}\) for 1-SB\(_{9}\)H\(_{11}\) is –22.9 ppm (GIAO-MP2/II). Such a value could mean that this species belongs to the group of the so-called three-dimensional aromatic systems,\(^{11}\) as was the case with, for example, closo-2,1- and 6,1-PCB\(_{8}\)H\(_{9}\).\(^{12}\) Molecular structure determinations of other three-dimensional aromatics are in progress.
Electronic-diffraction data were recorded using the Balzers Eldigraph KD-G2 instrument at the University of Oslo on Kodak electron image plates with nozzle-tip temperatures of between 65 and 68 °C for the middle camera data and between 68 and 73 °C for the long camera data. The accelerating voltage of the electron beam was 42 kV and the voltage/distance calibration was performed using benzene as a reference. The weighting points for the off-diagonal weight matrices, correlation parameters and scale factors for both camera distances are given in Table S1. The least-squares refinement process was carried out using the ed@ed v3.0 program employing the scattering factors of Ross et al.

Computational methods

Along with the microwave study of 1-SB₃H₉, a series of high-level calculations were reported. These calculations at the MP2(full)/6-311G**, B3LYP/6-311G** and B3LYP/cc-pVQZ levels found the structure to have C₆v symmetry. Using the resources of the UK National Service for Computational Chemistry Software (NSCCS) running the Gaussian 03 suite of programs, we extended these calculations to the MP2(full)/6-311+G** and B3LYP/6-311+G** levels.

Force constants were calculated at the B3LYP/aug-cc-pVTZ level and subsequently used, along with the program SHRINK, to obtain initial amplitudes of vibration and curvilinear distance correction terms for use in the GED refinement.

NMR chemical shifts were calculated using the GIAO-MP2 method, which is incorporated in the Gaussian 03 program. The individual gauge for localized orbitals (IGLO-II) basis sets were used for all atoms.

Acknowledgements

We thank the EPSRC for funding (grant EP/C513649) and the NSCCS for computational resources. We also appreciate financial support from the Ministry of Education of the Czech Republic (project no. LC523). The valuable comments of Professor M. Bühl (University of St. Andrews) are very much appreciated. D. H. thanks the Royal Society of Edinburgh for funding a collaborative trip to Edinburgh.

Notes and references