Physical modelling of forest fire spreading through heterogeneous fuel beds

Suggested running head: Fire spread through heterogeneous fuels

Albert Simeonia,d Pierre Salinesib and Frédéric Morandinic

a Department of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
b Fire Department of South-Corsica, BP 552, 20189 Ajaccio cedex 2, France
c UMR CNRS 6134 – SPE, University of Corsica, BP 52, 20250 Corte, France
d Corresponding author. Email: asimeoni@wpi.edu

Abstract

Vegetation cover is a heterogeneous medium composed of different kinds of fuels and non-combustible areas. Some properties of real-fires arise from this heterogeneity. Creating heterogeneous fuel areas may be useful both in land management and in fire fighting by reducing the fire intensity and the fire rate of spread. The spreading of a fire through a heterogeneous medium was studied by a two-dimensional reaction-diffusion physical model of fire spread. Randomly distributed combustible and non-combustible square elements constituted the heterogeneous fuel. Two main characteristics of the fire were directly computed by the model: the size of the zone influenced by the heat transferred from the fire front and the ignition condition of vegetation. The model was able to obtain rate of fire spread, temperature distribution and energy transfers. The influence on the fire properties of
the ratio between the amount of combustible elements to the total amount of elements has
been studied. The results provided the same critical fire behaviour as described in both
percolation theory and laboratory experiments but the results were quantitatively different
because the neighbourhood computed by the model varied in time and space with the
geometry of the fire front. The simulations also qualitatively reproduced fire behaviour for
heterogeneous fuel layers as observed in field experiments. This study shows that physical
models can be used to study fire spreading through heterogeneous fuels and some potential
applications are proposed about the use of heterogeneity as a complementary tool for fuel
management and fire-fighting.

Additional keywords: Fire critical behaviour, non-combustible zones, reaction-diffusion
model, surface fire spread.

Introduction

The main physical forest fire spread models describe the fire spreading through homogeneous
fuels (Pastor et al. 2003). However in the field, homogeneous fuel beds are extremely rare
(Brown 1982); vegetation cover is a heterogeneous medium including different kinds of fuels
and non-combustible areas (Bradstockl and Gill 1993). Some of the fires’ properties can arise
from this heterogeneity, for instance, the development of fire fingers (Caldarelli et al. 2001).
Real-fires also display thresholds for spreading that depend on environmental factors such as
wind and fuel moisture content (Cheney et al. 1993, Marsden-Smedley et al. 2001, Weise et
al. 2005). The fire regimes are partly a consequence of a coupling between heterogeneous

The work described in this paper is motivated by the necessity of developing new
approaches in land management and in fire-fighting. The field experience of the first two
authors as fire-fighters has shown them that fire-fighting as well as fuelbreaks can become ineffective during extreme events (strong winds, large-scale fires or steep canyons for instance). Artificially controlling the fuel heterogeneity may be useful to reduce fire hazard (Loehle 2004, Finney et al. 2007).

The critical behaviour of forest fires has been investigated in details thanks to the percolation theory (Stauffer, 1985). This approach allows better understanding of the forest fire behaviour at the field scale (Ohtsuki and Keyes 1986, Von Niessen and Blumen, 1986) and the interactions between fires and forest growth (Drosswel and Schwabl, 1992, Malamud et al. 1998). Other studies focused on the critical behaviour of fire spreading at the laboratory scale (Beer and Enting 1990, Nahmias et al. 2000).

In percolation-type models, the assumptions used to propagate the fire are not physically based (Weber 1990) and the critical thresholds are directly dependent on the assumptions made to build the models; this has been recognised as quite naive (Beer and Enting 1990). For instance, the probability of ignition of a tree or the definition of the neighbourhood of a burning plot – that is to say the other pieces of vegetation influenced by this burning plot – are constant in space and time. These quantities must be known a priori. In a real fire they vary with time and position. They also depend strongly on the fire front geometry and on vegetation as a fuel. This approach has permitted the modelling of the critical behaviour of forest fires at the landscape scale, and they are used to study the long-term interaction with forest growth and fire (Drossel and Schwabl 1992). The application of percolation-type fire spread models to the study of single fires is more limited because they do not provide the primary outputs, such as rate of fire spread or heat fluxes, which are necessary for forest managers and fire-fighters. Furthermore these models are very difficult to validate as, in real fires it is difficult to discriminate percolation effects from the influence of
the external conditions (wind, vegetation moisture content, topography and so on, see Tephany and Nahmias 2002 and Weise et al. 2005).

A recent approach based on the Small World Network combines physical modelling and percolation theory (Zekri et al. 2005). It provides very short calculation times but it necessitates the implementation of some physical parameters, as combustion time, time of degradation before ignition and long-range radiation effects. These parameters are obtained from physical modelling but they do not vary with time, position and front shape.

More recently, empirical fire spread models were used to assess the influence of heterogeneities made by prescribed burnings on the occurrence of unexpected fires (King et al. 2008). The results showed the role of heterogeneous fuels in decreasing fire size and intensity; they highlighted the need for more studies of this kind.

A convenient way to simulate the fire spread through heterogeneous fuel layers is by using Cellular Automata. They use a cellular mesh with each cell having a defined state (such as burned and unburned), a neighborhood and rules for the change in cell state. The rules use mathematical formulas to define the change in state of the cells along time. The rules are based on the fire spread mechanisms. To define the rules, some approaches use percolation (Duarte et al. 1992) and others use semi-empirical models (Berjak and Hearne 2002). A detailed analysis can be found in the reviews by Perry (1996) and Sullivan (2009).

The main objective of this paper is to evaluate the ability of physical modelling to study the properties of wildland fire spreading through heterogeneous fuels. To proceed, a two-dimensional reaction-diffusion model was used. The model includes a sub-model for long-range radiative transfer and was validated at the laboratory scale for homogeneous fuel beds (Morandini et al. 2005). The study focused on the properties of a single fire spread. The non-homogeneous fuel consisted of combustible and non-combustible square elements randomly distributed with a fixed ratio. Such a model (and physical models generally) directly
determines the neighbourhood thermally influenced by the fire front and the ignition of
vegetation from physical considerations. These quantities are dependent on many parameters,
such as vegetation species, moisture contents, wind, slope and so on. The model also provides
the fire rate of spread, the temperature distribution, as well as the energy transfers. In this
paper, the model simulations were qualitatively compared to experimental results and studies
conducted both at laboratory and field scales.

In the next sections, the reaction-diffusion model and the numerical implementation
are detailed. Results of simulations representing different kind of fuel heterogeneities are then
presented and discussed; the simulations are compared qualitatively with theory and
experiments. A short discussion is then conducted about the potential applications for fuel
management and fire fighting that arise from this study. Finally, the conclusions are drawn
and some scientific perspectives are proposed.

Numerical modelling

The physical model

The main characteristics of the model are summarized below. Further details are available in
the paper by Morandini et al. (2005).

The model has been developed to represent the fire spread through fuel beds (such as
pine needle beds) and it has been validated at laboratory scale in terms of rate of spread,
temperature, fire front shape and heat transfer. It takes into account the thermal transfers that
are involved in the field, including long-range radiation. Thus, this model can be considered
suitable for bench-scale modelling of the fire spread through heterogeneous fuels in the field.

The main equation is a thermal balance on a medium equivalent to the fuel bed:

$$\frac{\partial T}{\partial t} + k_t \nabla \cdot \nabla T = -k(T - T_s) + K \Delta T - Q \frac{\partial \sigma}{\partial t} + R$$

(1)

with the following boundary and initial conditions:
\[\dot{n} \nabla T = 0 \] at the fuel-bed boundaries, \hspace{1cm} (2) \\

\[T_0 = T_a \] for an unignited cell at time zero, \hspace{1cm} (3) \\

\[T_0 = T_{ig} \] for an ignited cell at time zero. \hspace{1cm} (4) \\

Load variation along time for a burning cell is represented by:

\[\sigma_k = \sigma_{k_0} e^{-\alpha(t-t_{ig})} \] \hspace{1cm} (5) \\

where \(T \) and \(T_a \) represent the equivalent medium temperature and the ambient temperature respectively. The ignition time \(t_{ig} \) is defined as the time when the cell temperature reaches the ignition temperature. \(k \) is the cooling convection coefficient, \(K \) is the equivalent diffusion coefficient, \(Q \) is the combustion enthalpy and \(\alpha \) is the combustion time constant. The coefficients of Eq. 1 are reduced coefficients as they are divided by the thermal mass per unit area of the medium equivalent, \(m \). The model parameters (\(k, K, Q \) and \(\alpha \)) are determined from a measured time-temperature curve obtained for a linear spread under no slope and no wind conditions (Santoni et al. 1999). The advective coefficient \(k_v \) is estimated as a thermal mass ratio (Simeoni et al. 2003). \(\sigma_k \) and \(\sigma_{k_0} \) are the fuel load and the initial fuel load, respectively. The radiative and convective terms are described in greater detail below.

With regard to the radiation term \(R \) in Eq. (1), the flame is assumed as being a radiant surface with a given height and constant temperature \(T_{fl} \) and emissivity \(\varepsilon_{fl} \) (Morandini et al. 2001). The amount of energy impinging the top of the fuel layer was calculated from the Stefan-Boltzmann law. The rate at which radiant energy from flame front is absorbed by the fuel element \(dS_v \) is:

\[\phi_{\beta-dS_v} = a_v \varepsilon_{fl} BT_{fl}^4 F \] \hspace{1cm} (6) \\

where \(B \) is the Stefan-Boltzmann constant and \(a_v \) is the fuel bed coefficient of absorption. The view factor \(F \) depends on the flame length and tilt angle as follows (cf. Fig. 1):
Thus we obtain:

\[F = \int_{3}^{\cos \phi_k \cos \phi_k} \frac{\pi r_s \cos \phi_k}{dS \beta \, dS_k} \] \hspace{1cm} (7)

\[R = 0 \] for a burning cell, \hspace{1cm} (8)

\[R = \frac{\phi_{\beta-\phi_s}}{mdS_v} = R' F \] for an unburned cell located ahead of the fire front, \hspace{1cm} (9)

where \(m \) represents the thermal mass of the fuel per unit area.

To express the convective term present in Eq. (1), the following equations for the flow through the fuel layer are set (Simeoni et al. 2003):

\[\frac{\partial V_{g,z}}{\partial \delta} + \frac{V_{g,z}}{\rho_g} \frac{\partial \rho_g}{\partial x} = -\frac{V_{g,z}(\delta)}{\rho_g} \frac{\partial \sigma_i}{\partial t} \] \hspace{1cm} (10)

\[V_{g,z}(\delta) = \chi \sqrt{2 \delta \left(\frac{T}{T_a} - 1 \right) g \cos \phi_s} \] \hspace{1cm} (11)

\[\rho_g T = \rho_s T_a \] \hspace{1cm} (12)

where \(\delta \) is the height of the fuel layer, \(\phi_s \) is the slope angle and \(\chi \) is a drag forces coefficient (Simeoni et al. 2003). The model presented in Eqs. (1-9) is two-dimensional along the ground shape (\(x \) and \(y \) directions). In order to take into account the buoyancy effects in the mass balance for the gas phase (Eq. 7), the vertical velocity of the gas at the top of the fuel layer \(V_{g,z}(\delta) \) has to be described (cf. Fig. 2). This is done from the momentum equation along the vertical axis (Eq. 8). Gas density is defined by using the isobaric perfect gas law (Eq. 9). To close the model, the hypothesis of the thermal equilibrium between the gas and solid phases in the fuel layer was set and the gas density was directly obtained from the temperature provided by Eq. (1).

Numerical implementation
Following the assumption of a quasi-static flow, the system of equations was implemented in a simple manner. The characteristic time of the coupled system was assumed to be the one of the energy equation (Simeoni et al. 2003). The 4th order Runge-Kutta method is used to solve the equation describing local wind conditions (Butcher 2008). For the thermal balance, a finite difference method was used. An “upwind” difference scheme (finite differences in the direction of flow) was used to take into consideration the extent of convective transfers in the wind direction (Patankar 1980). The resulting system of linear algebraic equations was then solved using the Jacobi iterative method (Sibony and Mardon 1988). The mesh size was of 0.01 m while the time step varied from 0.1 s to 0.01 s in order to meet the Courant–Friedrichs–Lewy (CFL) condition (Courant et al. 1928).

Table 1 shows the value of the model coefficients. They were established for a homogeneous layer of 0.5 kg/m² Pinus Pinaster needles with 10 % moisture content (Morandini et al. 2005). The model parameters h, K, Q and γ are determined from a measured time-temperature curve obtained for a linear spread under no slope and no wind conditions following the method proposed in Balbi et al. (1999). They are identified once for a given fuel, fuel moisture content and fuel load and remain valid for all the experiments considered hereafter, whatever the slope and wind. The flame length was set to 20 cm that represented the mean experimental height of flame (Morandini et al. 2005). The diffusion coefficient K was decreased by 40 % in comparison with Morandini et al. (2005). Indeed, the energy equation (1) was solved over the whole domain and diffusion losses between fuel cells (at a temperature greater than the ambient temperature) and empty cells (remaining at the ambient temperature) were over-estimated. The K coefficient represents a global diffusion of heat that includes the basic contribution of radiation from the bottom of the flame and from the embers inside the fuel layer (Balbi et al. 1999). To take into account this part of the radiative transfer and to better account for the long-range radiative transfer from the flame, which is enhanced...
for heterogeneous fuels, the radiative coefficient R^* was increased by 20\% in comparison with Morandini et al. (2005).

The spreading domain was composed of a homogenous area at the left hand side followed by a heterogeneous zone. The non-homogeneous fuel consisted of combustible and non-combustible square elements randomly distributed with a fixed ratio. The fuel distribution was created with a random number generator. A number between 0 and 1 was attributed to each cell of the domain. Then, each cell with a number lower than the fixed fraction of combustible elements (for instance 0.6 for 60\% of fuel and 40\% of empty space in the domain) was filled with fuel and each cell with a number higher than the ratio was left empty. The neighbourhood influenced by the fire front and the ignition of vegetation were directly computed by the model. Each vegetation element was made with a square of four mesh cells. This arbitrary choice was made to allow for both long-range effects of radiation and the critical behaviour of the fire. The tests were performed to assess the model ability to represent real fire behaviour and to consider different possibilities of using fuel heterogeneity both in land management and in fire-fighting.

A straight line ignition was initiated at the left hand side of the domain and the length of the homogeneous zone was set in order to allow a fully developed fire reaching the heterogeneous area. For each condition, the size of the domain was tested to avoid size effects and at least 50 repetitions were completed to obtain mean values of the fire spread properties.

Several numerical test series were conducted under different conditions: slope vs. no slope and wetted vs. dry fuels. As a first approach of the problem, wind configurations were not studied as slope and wind effects were similar for forest fuel beds up to a threshold value (Morandini et al. 2002).

Results and discussion
The simulations presented in the following section were performed to assess the model’s ability to represent fire spreading through heterogeneous fuel layers and to discuss the relevance of developing heterogeneous fuel zones for fire fighting and prevention. The different cases studied hereafter include a vegetation pattern made with a mix of Combustible and Non Combustible areas for flat and upslope conditions, a fuel layer made heterogeneous by a mix of dry and wet areas for flat conditions and a combination of the two conditions (Non Combustible areas and wet fuels).

Flat conditions

The first test series was conducted under no slope conditions to evaluate the critical threshold for the fire spread and the effects of heterogeneity on the rate of fire spread. The critical threshold is defined as the status between fire spread success and fire spread stop.

Figure 3 shows the effect of the fraction of combustible elements (FCE) on the rate of fire spread. The threshold was found to be equal to 0.5. It can be seen that near the critical value, the fire rate of spread is almost half the one for the homogeneous fuel (FCE = 1). The rate of spread decreases slowly to the FCE value of 0.52. Then, it decreases steeply to the threshold value of 0.5. This critical behaviour has been observed both in laboratory experiments (Téphany et al. 1997, Nahmias et al. 2000) and in the field (Bradstockl and Gill 1993, Cheney et al. 1993).

The threshold value is lower than the theoretical one found in percolation theory with a Von-Neumann neighbourhood (0.593 for 4 elements with an adjacent side to the considered one) but higher than the theoretical one with a Moore neighbourhood (0.407 for the 8 adjacent elements) (Stauffer 1985). This result implies that the mean neighbourhood for the whole fire front has a configuration between the two previous ones. In the simulations and in real fires,
the neighbourhood of a burning element changes with time as it depends on the radiation transferred ahead of the fire front.

To further study the role heterogeneous fuel beds in fire prevention, an area was simulated with two heterogeneous zones (FCE of 0.55 and 0.51). This configuration was chosen because it corresponds to a possible cleaning at the boundaries of a fuelbreak. Figure 4 shows a fire spreading in such a configuration. The addition of two zones with FCE over the threshold value (0.5) did not stop the fire as expected but it decreased the rate of spread by 35% in the first zone and by 46% in the second zone (see table 1). With the heterogeneous domain, the propagation time was increased by around 60% in comparison with the homogeneous domain. Another interesting effect, shown by Fig. 4 was the decrease in width of the fire front. This effect was systematically observed for all repetitions of the simulations (around 50) and it causes a lower amount of radiation to be sent ahead of the fire front.

The effect of the number of burned elements on distance and time was also studied. Percolation theory (Stauffer 1985) and experiments (Beer and Enting 1990, Téphany et al. 1997, Namias et al. 2000) show a power-law dependence for this quantity. A similar dependence was obtained with the model but the coefficients were greater than the theoretical ones. This was due to the difference in conditions between the simulations conducted in this work and the percolation studies that consider simple neighbourhoods. Indeed, Téphany et al. (1997) and Nahmias et al. (2000) designed their experiments to match the theoretical neighbourhoods; in contrast, the model coefficients were in the same range as those obtained for fire spread under more realistic experimental conditions (Beer and Engins 1990). As there is little data available in literature, this aspect should be further investigated in the form of experiments dedicated to the critical behaviour of forest fires. This objective is clearly beyond the scope of the present paper that is devoted to the evaluation of the relevance of physical modelling to study heterogeneous fuel layers in the context of fire prevention.
Slope conditions

The influence of slope was also analyzed. Figure 5 displays the burned elements at the end of the spreading for a 0.31 FCE and a 10° slope. The upslope direction is shown by an arrow. For this slope, 0.31 FCE was found to be the threshold value. As was seen previously for flat conditions, a slight change in the FCE value (from 0.31 to 0.32) induced a change in the fire regime and demonstrated that the model is able to describe the critical fire behaviour. This value is lower than 0.5 for flat conditions because of the increased heat transfers in the slope direction. Fire fingers developed, as observed in experiments at laboratory scale (Téphany et al. 1997). This behaviour has also been observed for wildfires in heterogeneous areas (Caldarelli et al. 2001), though it must be acknowledge that fire fingers can also be caused by other parameters (changing in wind, uneven ground, infrastructure etc.). The main finger did not reach to the edge of the domain because its width reduced with time (as an effect of the random distribution of empty elements and as the FCE was equal to the critical value).

Figure 5 also shows the long-range ignition of combustible elements. In the main spreading direction, the fire front ignited combustible cells even if empty cells were located in between them. This was mainly due to the radiative contribution of the tilted flames in the slope direction as computed by the model. At the sides of the finger, adjacent cells did not burn because the heat transfers were lower. This long-range ignition has been observed in laboratory experiments with square elements of wood shavings (Téphany et al. 1997). The authors have also observed it in wildfires but it must be validated by field experiments as the potential causes (radiation or firebrands) are very difficult to separate during uncontrolled fires.

It should be noted that sometimes the combustible cells located at the border of non-combustible zones did not burn (see Figs. 4 and 5) as they were cooled by diffusion losses with the adjacent empty cells. This effect remains to be validated in the field as it is generally
observed that continuous pieces of vegetation (with low moisture contents) often burn entirely.

Figure 6 shows the temperature distribution at the intermediate time $t = 50$ s for the same test as depicted in Fig. 5. One can note the end of the spread through the homogeneous zone at the boundaries of the domain (where high temperatures were present). This figure illustrates the long-range radiant effect of the model. The neighbourhood (that is to say the cells that are heated up by the fire front) of the large fire finger in the middle of the domain is very different from the ones of the narrow fingers at the upper and lower parts of the domain. The fuel cells located in front of the large finger are heated 20 cm ahead of the fire front whereas the cells located in front of the small fingers are only heated up to 8 cm. The short-range effect for narrow fingers and the long-range effect for large fingers are due to the neighbourhood calculated by the model that varies with the fire front shape. This property is not represented by other models based on percolation theory that consider a constant neighborhood for the burning cells, whatever the fire front shape (Ohtsuki and Keyes 1986, Von Niessen and Blumen 1986, Drossel and Schwabl 1992, Zekri et al. 2005). The fire fingers observed in Figs. 5 and 6 correspond to the same effect leading to a narrow fire front in Fig. 4.

Wetted heterogeneous zones

The last type of fuel heterogeneity considered in this work was that of water. The domain was constituted by a homogeneous fuel with randomly wetted elements. These conditions simulated the random water supply on a fuel bed by spraying. The additional water was assumed to remain outside vegetation. If one considers a fuel cell, the external water acts as a sink source prior to ignition. Thus, a sink term due to the vaporization of vapour at 100°C is added to Eq. (9) until all the mass of external water has evaporated. Moisture content
represents the amount of water inside vegetation and it is indirectly included in the model coefficients h, K, Q and γ (Balbi et al. 1999). Several tests were conducted and an example is depicted in Fig. 7. It represents the arrival of a fire front on a heterogeneous wetted zone with a fraction of wetted elements (FWE) of 0.6. Each of these contained 70 % water, added on the basis of the fuel load (almost dry fuel). When it reached the heterogeneous zone, the fire front dried the cells located just in front of it; for example, the white zone circled in Fig. 7 as an example. Nevertheless, the FWE value was high and it did not allow the fire to propagate.

Further simulations were conducted for a lower FWE value (0.5). Even if the fire spread over the whole domain, the decrease in the rate of spread was substantial compared to a homogeneous dry medium (having a 10 % residual moisture content); it spread at half the rate. Furthermore, some unburned areas remained, corresponding to big clusters of wetted elements, as shown in Fig. 8. This phenomenon was observed both in laboratory and field experiments for fuel elements wetted by sprinklers (Nahmias et al. 2000) and for particularly wet vegetation (Santoni et al. 2006).

The configuration used for the simulations is similar in nature as the configuration used by Finney (2003) for fuel mixed with very slow-burning fires. However, neither fire-finger nor unburned patched were observed because all fuels burned totally.

The last test evaluated the influence of the moisture content on the threshold value. Heterogeneous areas were considered with wetted vegetation elements and empty elements. A non-spreading configuration was reached with 40 % of water and a 0.4 FCE. As expected, the necessary FCE value that prevented the fire from spreading was low (see the field experiment conducted by Nahmias et al. 2000). Merging the two processes allowed the FCE to be increased substantially to reach the no-spread threshold and it decreased further the spreading time with respect to the dry configuration.
About some potential applications

Some potential applications of heterogeneous fuels are described in this section and complete the thoughts presented in Nahmias et al. (2000). These potential applications are only the two first authors’ perspectives and are a consequence of their joint work in the field and in the laboratory. Obviously, they need to be scientifically studied before any implementation in the field.

Considering land management, the efficiency of fuelbreaks could be increased by heterogeneous areas located on their two sides. This would decrease both the rate of spread of a fire reaching a fuelbreak and the fire front width (as displayed in Fig. 4). The heterogeneous strip on the other side of the fire front arrival would also decrease the probability of ignition by firebrands.

The Wildland-Urban Interface could be treated as heterogeneous buffer zones. The heterogeneity effect could even be increased by using the distribution of Non Combustible Areas in urban development planning such as houses, car parks, roads and so on (Spyratos et al. 2007). A fire reaching these heterogeneous zones would break in several fingers and produce the same benefits as described in this paper for fuel breaks.

Concerning fire-fighting, the technique of putting as much water as possible on the fire front to stop it becomes ineffective under extreme conditions. Figures 7 and 8 show that the fire dynamics is reduced by heterogeneous zones created by randomly wetting the fuel. Heterogeneous areas randomly pre-seeded with water or fire retardant before the arrival of the fire front could create safer conditions for ground fighting and increase wildland/urban interface protection. Sprinklers randomly distributed in the borders of the wildland/urban interface could improve passive fire protection while saving water.

Finally, the combination of random fuel suppression and random wetting before the fire arrival (corresponding to the last case discussed in the previous section) could be used to
combine several heterogeneity effects in order to decrease vegetation removal and the associated costs in heterogeneous areas while maintaining a significant effect on the fire.

Conclusions

Different configurations of heterogeneous vegetation have been tested with a physical model. The influence of the heterogeneity of vegetation on the critical behaviour of the fire spread has been studied. The value of the fire spread rate and the evolution of the fire shape have also been examined.

The simulations showed the relevance of using physical modeling to describe fire behaviour in heterogeneous fuels. The model allowed to represent qualitatively the fire behaviour for laboratory and field experiments. Physical models represent an efficient tool to study these problems as they provide many outputs that can be useful for fire-fighting and fire management such as fire shape, rate of fire spread and time for a fire to cross a heterogeneous zone.

A short discussion has been conducted about the potential application of using heterogeneous fuels in forest and Wildland-Urban Interface management and protection. Table 2 presents an overview of the results obtained for the different configurations used in this study. It was concluded that combining the different processes creating heterogeneity improves the efficiency of heterogeneous zones. Nevertheless, as there are only few experiments available in literature for heterogeneous fuels, both laboratory and field experiments have to be conducted to test and validate quantitatively the simulation results of physical models.
References

Table 1. Model parameters for a bed of *Pinus pinaster* needles (fuel load of 0.5 kg m\(^{-2}\) and moisture content of 10\%)

<table>
<thead>
<tr>
<th>model parameter</th>
<th>(h) (s(^{-1}))</th>
<th>(K) (m(^2) s(^{-1}))</th>
<th>(Q) (m(^2) K kg(^{-1}))</th>
<th>(\gamma) (s(^{-1}))</th>
<th>(R^*) (K(^{-3}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>(4.1 \times 10^3)</td>
<td>(9.0 \times 10^6)</td>
<td>(2.34 \times 10^3)</td>
<td>0.35</td>
<td>(2.0 \times 10^4)</td>
</tr>
</tbody>
</table>
Table 2. Overview of the different simulated tests

<table>
<thead>
<tr>
<th>Slope</th>
<th>0°</th>
<th>0°</th>
<th>0°</th>
<th>10°</th>
<th>10°</th>
<th>0°</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCE</td>
<td>0.5</td>
<td>0.55 – 0.51</td>
<td>0.31</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Wetted</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>70 %</td>
<td>70 %</td>
<td>40 %</td>
</tr>
<tr>
<td>elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Spreading</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Fig. 1. Radiative transfers between two elementary surfaces of flame and fuel.
Fig. 2. Schematic representation of the flow within the fuel layer.
Fig. 3. Rate of fire spread as a function of the FCE for no slope.
Fig. 4. Burned elements at the end of the spreading for a domain divided in 3 zones: homogeneous, FCE = 0.55 and FCE = 0.51.
Fig. 5. Burned elements at the end of the spreading for a 0.31 FCE and a 10° slope.
Fig. 6. Temperature distribution during the fire spread ($t = 50$ s) for a 0.31 FCE and a 10° slope.
Fig. 7. Burned elements at the end of the spreading for a 0.6 FWE with 70% of water and no slope.
Fig. 8. Burned elements at the end of the spreading for a 0.5 FWE with 70% of water and no slope.