Abstract—We propose a compact circularly polarized series-fed patch array with enhanced radiation performance at S-band. To our best knowledge, no similar single-layer structure has been designed, measured and reported in the literature with equivalent radiation performances in terms of reduced sidelobe-level (SLL) and aperture efficiency as well as compactness and simplicity. The planar array consists of a 50-Ω microstrip single feed point, offering uniform and efficient excitation of all its elements that enables a broadside beam with high-gain and low sidelobes. A feed network for such aperture control is designed and optimized to provide good impedance matching with a two-point excitation per radiating element, which is based on 0° and 90° meander lines to enable circularly polarized radiation. A structure made by a 4×4 arrangement of square patches is simulated, optimized, and manufactured, providing a realized gain of about 10 dBi and a SLL below –15 dB. Very good axial ratios and high efficiencies are obtained. The proposed antenna may be of interest for next-generation far-field wireless power transmission systems and other applications including target tracking, radar and Internet of Things technologies requiring efficient circularly polarized radiation.

Index Terms—Controlled aperture distribution, series-fed array, circular polarization, radar, wireless power transfer.

I. INTRODUCTION

Thanks to their reduced weight and cost, one-dimensional and two-dimensional arrays of planar antennas are considered conventional solutions to achieve high-gain and good side-lobe levels (SLLs) [1]. In the last few decades, various shaped microstrip patch antennas have been introduced, mostly thanks to their low-profile nature and capability to achieve circular polarization (CP) by means of single feeds [2]–[9]. The simplest solution to excite these structures consists in the use of fully integrated planar feed networks, which can be properly designed to achieve frequency scanning high-gain beams or broadside radiation within a certain bandwidth (BW).

As it is well-known, a feeding network is needed to control amplitude and phase distribution at each element of the array, which is typically achieved by means of two alternative configurations, i.e., corporate and series feeds, which can be arranged on single or multi-layer structures [1]. The latter is based on a single transmission line that progressively couples power to each element of the array. With respect to the corporate feed it allows for the possible reduction in the size of the network and the number of feed lines, an aspect that can be highly desirable to maximize the array efficiency and to minimize the SLLs [10]. This is typically achieved, however, at the expense of a narrow operational BW, and it requires phase synchronization to compensate for the inherent phase difference between the array elements. In both cases, the feeding network should be optimized to minimize interferences with radiation from the array. In this frame, circularly polarized beams can be obtained either by using CP radiating elements [11], [12], or by a composite layout in which more antennas are properly arranged with the required magnitude and phase [13], [14]. In general, the latter method limits the possibilities of using the configuration of the radiating elements to shape the array pattern.

We propose here a uniformly excited CP microstrip array defined by a series feeding technique that allows for control and tuning of the amplitude and phase distribution at each element within the array for quadrature excitation. Our approach enables other controlled aperture distributions and tapering for efficient radiation and with low SLLs compared to other CP series-fed arrays. In fact, to the authors’ best knowledge, no similar CP antenna array has been reported based on such a simple design through a 50-Ω microstrip transmission line connected to a single input port and with uniform excitation of its elements. In particular, a high-gain broadside beam, reaching a realized gain in excess of 9.8 dBi, is observed. A detailed comparison with other works in the literature is reported, demonstrating that the proposed structure offers improved performance in terms of efficiency and SLLs (−15 dB) while maintaining reduced costs, compact size, design simplicity, ease of fabrication and full integrability with other planar single-layer structures. Possible applications could include retrodirective antenna technologies, wireless power transmission, radar, and other single-frequency tracking systems.

II. SINGLE ELEMENT DESIGN

We firstly report here the design of the elements within the array at 2.4 GHz, whose geometric configuration and feeding points are optimized to achieve high CP purity and compactness. The
approach can generally be applied to patches of arbitrary shape, but
for simplicity, we consider a conventional squared microstrip patch
antenna [1]. Two designs based on different commercial substrates
are considered, i.e., a RO3206 substrate from Rogers with thickness
$h = 1.27 \text{ mm}$, relative permittivity $\varepsilon_r = 6.15$, and loss tangent
tan $\delta = 0.0027$, and a TLY5 Taconic with $\varepsilon_r = 2.18$, $h = 1.57$
mm, and tan $\delta = 0.0009$. A substrate about 20% thinner is chosen
in the first case to limit dielectric losses.

The dimension for both sides of the patch for the Rogers and the
Taconic substrate are 24.7 mm and 40.6 mm, respectively. This makes
the patch printed on the Rogers substrate to be 40% smaller due to
the difference in the relative permittivity between the two laminates.
Quarter-wave transformers are connected to the patch edges to feed
the elements with a 90$^\circ$ phase difference between the relevant ports,
as needed for CP radiation (see Fig. 1 for the schematic of the
single-element). The structure is simulated and optimized with CST
Microwave studio.

Considering 4 elements within the array and with ideal feeding,
i.e., a 4×1 array, simulations for the realized gain over frequency
show a -3 dB radiating BW of about 3%, which might be suitable for
several applications such as wireless power transmission (WPT)
in the far-field, retrodirective antenna arrays, or radar where efficient
and low-cost PCB structures are needed. Due to the different laminates,
the maximum realized CP gain of the two prototypes differs by about
2 dB (all results not shown for brevity).

The axial ratio (AR) for both designs are below 0.7 dB in the
entire simulated band (2 to 3 GHz), confirming highly pure CP
operation. Also, the patterns demonstrate good CP radiation versus
angle, exhibiting a 180$^\circ$ AR beamwidth (BMW) less than 3 dB in
both principal planes. For the aforementioned Rogers design, in terms
of realized gain versus angle, the 3 dB BMW is approximately 98$^\circ$
in both planes. Similar CP radiation values were observed for the
Taconic substrate.

The total radiation efficiencies at 2.4 GHz for the two structures
(which includes ohmic losses and reflection losses), are equal to about
73% for the Rogers and 86% for the Taconic substrate. As expected,
the larger value of ε_r leads to a reduced efficiency, mainly due to the
tan δ of 0.0027 for the RO3206 substrate. However, increasing the
permittivity of the substrate allows for a reduction in the antenna size,
and, therefore, the possibility of reducing the distance between the
array elements to avoid high sidelobes as well as to accomodate the
spacing requirements for the feed system. To enhance the radiation
features when implementing the array, at the expense of an acceptable
loss of efficiency while maintaining compactness, we consider in the
following sections the RO3206 laminate.

III. ARRAY FEED DESIGN

The single-element described in the previous section is employed
here to design a series-fed 4×1 CP array excited by means of a single
feed line using microstrip technology. To achieve persistent high-gain
broadside radiation, the feeding amplitude and phase are properly
controlled at each array element by ensuring an uniform distribution;
i.e., we adopt an equal amplitude excitation for each radiating
element. Hence meanders and impedance transformers for phase and
amplitude control, respectively, are introduced and optimized. On this
basis, standard transmission-line theory [15] is used to evaluate the
input impedance of the antenna and to control the relevant phase
offset at 2.4 GHz for CP radiation. The corresponding network
dimensions vary from 0.2 mm to 10 mm in width, and from 1 mm
to 20 mm in length. A schematic view of the unit cell for the single
element and an illustration of the feeding network is reported in Figs.
1 and 2.

As it is visible, the left and right tees control the power distribution
at the input of each of the patch edges as well as the power injected
towards the adjacent antenna element. Each tee is made by two
independent transmission lines per branch (i.e, L_1, L_2, D_1, D_2, R_1 and R_2). The meanders also have a constant width, given by
W_0, and include chamfered corners on each of the 90$^\circ$ turns to
minimize undesired reflections caused by capacitive effects arising
at the corners [15], [16].

Additionally, in Fig. 1, m_{90} indicates the meander section that
controls the phase offset between the antenna ports, whereas m_{0}
provides connectivity between all array elements. The length of the
horizontal transmission line of all meanders is fixed to 5 mm, being
a compromise between the need for compactness and the mitigation
of the coupling between the arms of the meander.

A full-wave procedure was then implemented to optimize the
performance of the feeding network. During the full-wave simulation
steps the amplitude balance was firstly tuned, followed, secondly,
by a fine adjustment of the meanders length to find the relevant phase
balance. Finally, an additional optimization step was performed to
introduce a very small refinement of the transmission lines widths,
and to compensate for the small impedance variations introduced
during the second step. The geometric dimensions of the optimized
network are reported in Table I. No values are reported for the right
tee of the last antenna element, since all the power reaching this point
goes to the top port of the last patch.

Figure 2 presents a picture of the manufactured series-fed array.
The first meander line (blue box), controls the phase difference of
the orthogonal modes supported by the antenna element, while the
second (black box), the phase difference. As regards the amplitude
distribution, uniform weights have been applied to each patch. Hence,
two impedance transformers are positioned at the tee junctions to
provide the same power at the two network branches. The spacing
between the antenna elements has been finely tuned, which for the
final configuration is equal to 0.59λ_0.

To quantify the effects on the array performance introduced by
the feeding system, in terms of radiation and total efficiency, we
have studied the antenna in the absence of feeding network. A
degradation of the radiation and total efficiencies of about 8% and 9%, respectively, has been observed (complete results not reported for brevity). An improvement of 1.2 dB for the SLL in the presence of the network is also visible, but no significant variation of the realized gain has been observed. To summarize, the feed system has a minor and acceptable impact on the radiation performance of the CP array.

The amplitude and phase balances at each element within the array are also investigated to assess the microstrip feeding network. This simulation model is shown in Fig. 3 while results are reported in Figs. 4 and 5. Around 2.4 GHz, an amplitude variation of the S-parameters within 1 dB can be observed (note that, given the 4 × 1 array layout and uniform element excitation, a power split of −9 dB is required for each port), thus resulting in about 1 dB of insertion losses. The phase balance (see Fig. 5) exhibits good CP feeding to each of the four patches at the design frequency which ensures quadrature excitation within a tolerance of 90° ± 2°.

IV. SERIES-FED ARRAY PERFORMANCE

The measured and simulated reflection coefficients for the series-fed patch array are reported in Fig. 6 and a good agreement is observed around the design frequency, which is zoomed in the figure inset. A minor frequency shift can be observed for the reflection coefficient and this is likely related to the manufacturing tolerance for the relative permittivity of the employed substrate. To further understand this practicality, new simulations were completed to estimate the value of εr. Results suggest that the actual relative permittivity, defining the employed RO3206 substrate, was actually 6.32 and not the rated value of 6.15. This is clearly shown in Fig. 6 where an excellent agreement can be observed between the simulations (with εr = 6.32) and the measurements.

These results further suggest that the center frequency for the series-fed array is slightly lower than originally intended. In fact, results in the inset of Fig. 6 clearly show that the center frequency for the fabricated structure was about 2.37 GHz and not 2.4 GHz as per the original design. This can be seen by inspecting the minimum of the |S11| plot, which is below −20 dB at about 2.37 GHz for the measured structure. It should also be mentioned that the mutual coupling between the patch elements has been studied during the optimization of the array and its feeding network. Coupling values below −20 dB (not shown for brevity) have been achieved, suggesting that the mutual coupling between elements is properly considered.

Far-field simulations in Fig. 7 further suggest that there is a very minor difference in array performance due to this frequency shift. It can be observed that the value for the maximum realized gain, the beam pattern shape and its pointing angle, as well as the cross-polarization level, are consistent, albeit the shift in center frequency for the array. The realized CP gain at broadside is reported in Fig. 8 versus frequency as well as the cross-polarization levels. In addition, the AR versus frequency and the AR BMW is plotted in Fig. 9 where agreement can be observed in the measurements and simulations. Figures 10 and 11 report the simulated and measured realized gain at 2.37 GHz in the principal planes. Good SLLs (around −15 dB) are observed. Finally, Figs. 12 and 13 present the realized gain at 2.38 GHz, showing good cross-polarization levels and high-gain.

The simulated and measured AR versus frequency and angle is shown in Fig. 9. Also, the AR measurements in both cases (a-b) appear degraded if compared to the simulations. This is likely caused

Table I

| Dimensions (in mm) of the Feeding Network for the Proposed Series-fed CP Array |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | A1 | A2 | A3 | A4 |
| Left tee | Right tee | Left tee | Right tee | Left tee | Right tee |
| L | W | L | W | L | W |
| L1 | 5.86 | 4.01 | 5.82 | 6.5 | 4.93 | 6.36 | 4.1 | 4.66 | 3.65 | 2.03 | 5.28 | 4.12 | - |
| L2 | 6.81 | 4.46 | 6.8 | 4.26 | 3.89 | 3.04 | 2.81 | 2.14 | 3.82 | 2.1 | 4.89 | 2.89 | 4.75 | 3.21 | - |
| R1 | 6.5 | 4 | 7.83 | 3.78 | 3.49 | 2.09 | 3.06 | 1.24 | 2.9 | 2.35 | 4.58 | 2.38 | 5.53 | 3.11 | - |
| R2 | 5.86 | 5.5 | 6.76 | 3 | 4.38 | 5.13 | 3.77 | 6 | 3.24 | 4.96 | 0.38 | 2.93 | 5 | 1.8 | - |
| D1 | 11 | 1 | 4.14 | 1 | 4.95 | 1 | 4 | 1.5 | 7 | 1 | 5.15 | 1 | 4.2 | 1 | - |
| D2 | 11 | 3 | 4.05 | 1 | 4.72 | 1 | 5.25 | 1.5 | 6.5 | 1 | 4.71 | 1 | 2 | 1.5 | - |
| m_90 | 10 | 11.65 | 9.1 | 8.1 | - | - | - | - | - | - | - | - | - | - | - |
| W_0 | 20.87 | 21.6 | 23.33 | - | - | - | - | - | - | - | - | - | - | - | - |
| μ | 1.83 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

Fig. 3. Schematic view of the optimized series-fed feeding system where the input of the array is at port 1. A controlled aperture distribution along the array, with uniform amplitude excitation for CP, is achieved through the series network of meandered transmission lines and impedance transformers where antenna elements are labeled left to right; i.e. A1, A2, A3, and A4. The physical aperture size for the array, which extends λ₀/4 beyond the physical edges of the exterior patch elements, A1 and A4, is defined as L × W.

Fig. 4. Simulated amplitude balance for the optimized feed system shown in Fig. 3: (a) S-parameter response and (b) zoomed view around 2.4 GHz. It can be observed that at the design frequency, all elements are fed with about the same amount of input power.
Table II

Array Type	Frequency (GHz)	Antenna Length (λ₀)	Element Imp. (SLL) (dB)	Realized Gain, G	3 dB AR (φ = 90°) (dB)	AR AR AR First Single Aperture Aperture Control or Tapering Efficiency (%)	
[8]	6 x 2	6.81 - 7.14	4.1, 4.3	-	3.2, 4.3	0.9, 0.6	9.7 - E
[11]	1 x 5	5.6 - 4.6	0.91, 1.12	12	12.4 - 20 / -	-	2.2 - E
[17]	1 x 1.2	8 x 6	0.46, 5	12.5	59 / -	-	3.9 - 10.5
[18]	1 x 1.2	8 x 6	0.46, 5	12	45 / -	12.8, 1.1	10.5 - E
[19]	1 x 10	10.5, 5, 5	0.5, 4	15.94	12.5 / -	3.1	2.5 - 12.34
[20]	1 x 24	260, 11.2	0.42, 3.85	15.32	25 / 50	1.27	- 12.5
[21]	1 x 4	17.5, 3.8	0.68, 7.4	9.36	1.6 / -	1.8	13.5 - E
[22]	1 x 5	3, 4	0.67, 8.5	10 / -	9.3	0.2	- 22
[23]	1 x 8 SR	10, 1.33	0.51, 15	11.1	15.7	1.2	- 11.5

Fig. 5. Simulated phase balance of the feed system: (a) phase difference concerning the same element (see Fig. 3); (b) phase difference between elements. Results show that the each antenna element within the array is driven in quadrature at 2.4 GHz.

Fig. 6. Reflection coefficient for the proposed series-fed CP array from 2 to 3 GHz and from 2.3 to 2.4 GHz in the inset. Results show a very good agreement between the measurements and simulations considering εᵣ = 6.32 (black dashed line) over the frequency band. It should be mentioned that initially simulations were performed considering εᵣ = 6.15 (blue dashed line), but after measuring the manufactured prototype, a shift in the resonant frequency was observed which suggests actually εᵣ = 6.32. This can be related to tolerances in the relative permittivity for the employed substrate.

by some small alignment errors during the measurements and by using a practical reference antenna which did not have ideal cross-polarization levels. Regardless, the AR is about 2 dB at the antenna design frequency, while the 3−dB AR RM is 40° and 64° in the ϕ = 0° and ϕ = 90° principal planes, respectively.

To better assess the features of the proposed CP array with uniform excitation of its elements, we report in Table II a comparison with other series-fed CP arrays found in the literature. It can be observed that the proposed series-fed CP array provides a compromise between antenna compactness, best possible SLLs given the employed uniform aperture distribution (which has not been demonstrated previously), and antenna aperture efficiency. Approaches to characterize and mathematically optimize such a series-fed array in terms of the minimization of the AR over a specified frequency bandwidth can be found in [7] whilst also considering the impedance BW.

Although the proposed array provides narrow-band operation (as also observed with other series-fed CP arrays, see Table II), the low SLLs and the CP radiation achieved with the simple design (only 4 compact elements), make it an excellent candidate for applications such as far-field wireless power transfer, radar or satellite communications. It should also be mentioned that this performance has been achieved avoiding feeding networks made by multiple transmission lines as well as dual- or multi-layer laminates, which can significantly

Fig. 7. Simulated realized gain with εᵣ = 6.32 and 6.15 for the modeled substrate at 2.37 and 2.40 GHz, respectively; (a): x-z-plane (ϕ = 0°); (b): y-z-plane (ϕ = 90°). Cross-polarization levels are also shown.
Fig. 8. Realized gain versus frequency for the proposed series-fed CP array. Cross-polarization levels are also shown. A good agreement is observed since the simulations consider \(\varepsilon_r = 0.32 \) for the substrate.

Fig. 9. Measured and simulated AR considering \(\varepsilon_r = 6.15 \) and 6.32 for the series-fed array: (a) AR versus frequency at antenna boresight; (b) simulated AR versus the zenith angle and compared to measurements at 2.38 GHz.

increase the complexity in the fabrication process of the array as well as increase the size of the antenna.

We should also mention that the use of metamaterial transmission lines could further enhance the performance of the proposed feeding network, as discussed, e.g., in [24, 25], where, however, linearly polarized devices are considered, and are therefore not directly comparable with our proposed design. For simplicity, uniform excitation of the patches has been considered in our design. This opens up the possibility to further decrease the SLL and control the beam pattern, in particular, by tapering the array using alternative approaches (such as binomial, Chebychev, or cosine-squared, etc.) as well as increasing the number of CP elements to enhance the directivity of the antenna, should it be desired. This would require the proper adjustment of the impedance transformers to maintain proper element excitation.

The response in terms of the impedance BW and 3-dB AR BW (see Figs. 6 and 9, Table II), also makes the proposed array a good candidate for radar and mobile phone charging in the far-field and narrowband WPT retrodirective applications based on high-power transmission. In particular, where efficient antenna arrays are required with narrow CP performance with respect to frequency. This type of antenna response is needed to minimize any electromagnetic coupling effects from other sources (acting like a filter) while maintaining CP antenna operation at a single frequency with high power, and also ensuring high radiation efficiency within a compact design. For example, the proposed series-fed array of this work could be an alternative to the arrays used in [26] and [27], which employed a network of series-fed sub-arrays (see Fig. 5 in [26]) to realize a one-dimensional CP retrodirective antenna array. In those works, CP radiation of a single-tone and target self-tracking were demonstrated at S-band for mobile phone battery charging and values of over 500 mW of RF power were steered towards the mobile receiver unit at a distance of 0.5 m. However, efficient aperture design for the antennas were not employed since no method to directly control element radiation was considered (i.e. a Chebychev or uniform aperture distribution was not adopted). It is expected that with more efficient and compact arrays, employing a properly designed aperture distribution, as in this work, reduced losses and SLLs are expected in the antenna system. This can support higher levels of single-frequency retrodirected power enabling more proficient WPT.

V. CONCLUSION

A compact series-fed array design at about 2.4 GHz was proposed in this communication. A high-permittivity substrate, in combination with optimized meander lines, have been used to reduce the size and to provide a high-gain (about 10 dBic) and a circularly polarized beam with a low level for the first sidelobe (below \(-15\) dB). The impact on the performance of the considered single-line feeding network has been accurately analyzed, while the radiation features of the array have been contrasted with the state of the art (see Table II) as reported in the literature. As discussed, no similar compact and single-layer series-fed CP array has been demonstrated with comparable aperture efficiency, uniform excitation of its elements as well as equivalent sidelobe-levels.

Future work could consider the use of more elements or sequential rotation to further enhance the directivity and bandwidth as well
as the use of different lumped or distributed components to control the inter-element phasing instead of meander lines. This should be accomplished by minimizing any perturbation to the axial ratio whilst further enhancing design compactness as well as the operating bandwidth as required, or by designing an alternative aperture illumination (other than uniform, such as binomial, Chebychev, or cosine-squared, etc.). Considerations for linear- and dual-polarized implementations are also possible with the developed feeding approach. Furthermore, depending on the constraint on the maximum desired gain, standard windowing procedures could also be considered to achieve lower levels of the first sidelobe as in [28].

REFERENCES