Molecular analysis of methicillin-resistant Staphylococcus pseudintermedius of feline origin from different European countries and North America

Citation for published version:

Digital Object Identifier (DOI):
10.1093/jac/dkq203

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Journal of Antimicrobial Chemotherapy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Molecular analysis of methicillin-resistant Staphylococcus pseudintermedius of feline origin from different European countries and North America

Kristina Kadlec¹, Stefan Schwarz¹*, Vincent Perreten², Ulrika Gro¨nlund Andersson³, Maria Finn³, Christina Greko³, Arshnee Moodley⁴, Stephen A. Kania⁵, Linda A. Frank⁵, David A. Bemis⁵, Alessia Franco⁶, Manuela Iurescia⁶, Antonio Battisti⁶, Birgitta Duim⁷, Jaap A. Wagenaar⁷, Engeline van Duijkeren⁷, J. Scott Weese⁸, J. Ross Fitzgerald⁹, Alexandra Rossano² and Luca Guardabassi⁴

¹Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany; ²Institute of Veterinary Bacteriology, University of Berne, Berne, Switzerland; ³National Veterinary Institute, SVA, Uppsala, Sweden; ⁴Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark; ⁵University of Tennessee, Knoxville, USA; ⁶Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Rome, Italy; ⁷Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; ⁸University of Guelph, Guelph, Canada; ⁹The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
Sir,

Staphylococcus pseudintermedius is the most frequent causative agent of canine pyoderma and may also be associated with wound infections, urinary tract infections and otitis externa in dogs.1 Although more rarely, *S. pseudintermedius* causes infections in cats and has also been identified in infections of humans.1-3 The latter observation highlights the zoonotic potential of *S. pseudintermedius*. *S. pseudintermedius* appears to be able to readily accumulate antimicrobial resistance genes1,4 and, in recent years, a rapid increase in methicillin resistance has been observed.5,6 A recent multicentre study on methicillin-resistant *S. pseudintermedius* (MRSP) of canine origin, obtained in different European countries as well as in the USA and Canada, revealed that most of the canine strains exhibited resistance to virtually all classes of antimicrobial agents approved for veterinary use.4 This represents a major therapeutic challenge for veterinarians in Europe and North America. Moreover, this multicentre study revealed that among MRSP from dogs two distinct, dominant clones—as identified by multilocus sequence typing (MLST), *spa* typing, SCC*mec* typing and *SmaI* PFGE—have disseminated across Europe and North America.4 In contrast to the wealth of data available for MRSP isolates of canine origin, little data are available about MRSP from cats.

The aim of the present study was to characterize MRSP isolates from cats in different countries for their genetic relationships and antimicrobial resistance phenotypes and genotypes. Twelve epidemiologically unrelated MRSP isolates of feline origin were identified during 2006–08 in five different countries (Table 1). Eleven isolates were from clinical disease conditions, including septicaemia, urinary tract infections, nephritis, rhinitis, wound infection and pneumonia. The remaining isolate was obtained from a nasal swab of an apparently healthy cat (Table 1). All isolates were confirmed to be *S. pseudintermedius* by *MboI* digestion of a PCR-amplified internal fragment of the *pta* gene.4 For a better
comparison with data of canine MRSP isolates, MLST, \(^7\) spa typing, \(^8\) Smal PFGE and SCCmec typing was performed as recently described. \(^4\) MICs of 17 antimicrobial agents were determined using the VetMIC\(^\text{TM}\) microdilution panels (National Veterinary Institute, Uppsala, Sweden) as previously described and evaluated using the breakpoints of the CLSI. 4 MICs of rifampicin, mupirocin and quinupristin/dalfopristin were determined by Etest\(^\oplus\) (AB Biodisk, Solna, Sweden). Antibiotic resistance genes were detected using either a microarray or specific PCR assays as described previously. \(^4\)

All 12 feline *S. pseudintermedius* proved to be MRSP by oxacillin MICs of >16 mg/L and carriage of the *mecA* gene. Despite the diverse geographical origins, the 11 European MRSP isolates shared the same MLST type ST71, spa type t02 and SCCmec type II–III. SCCmec type II–III is a hybrid of SCCmec II (2A) from *Staphylococcus epidermidis* and SCCmec III from *Staphylococcus aureus*. \(^9\) PFGE analysis identified three different patterns J, N and O among these European feline MRSP isolates. The single MRSP isolate from Canada harboured an SCCmec type V element and exhibited spa type t23, MLST type ST100 and PFGE pattern B. A comparison with the data of the multicentre study on MRSP in dogs \(^4\) revealed that PFGE patterns B, N and O were exclusive to feline MRSP isolates whereas pattern J was the dominant PFGE pattern among European canine MRSP. \(^4\) The Canadian feline MRSP isolate also differed largely in its resistance phenotype and genotype from the European feline MRSP isolates. It was only resistant to β-lactam antibiotics via *mecA* and*blaZ*, and to tetracyclines via *tet*(M). In contrast, the European isolates exhibited three different expanded resistance phenotypes and genotypes (Table 1). All isolates were resistant to β-lactam antibiotics (mecA, blaZ), macrolides/lincosamides [erm(B)], gentamicin/kanamycin [aac(6′)-Ie/aph(2′)-Ia], kanamycin [aph(3′)-III], streptomycin [ant(6′)-Ia], trimethoprim [dfrG] and ciprofloxacin. Moreover, all but one isolate from Switzerland and all but two isolates from Switzerland and the Netherlands were resistant to
chloramphenicol (cat_{pC221}) and to tetracyclines [$tet(K)$], respectively. However, all feline MRSP isolates were susceptible to mupirocin, rifampicin, quinupristin/dalfopristin, linezolid and vancomycin, which are important for decolonization of humans or represent ‘antimicrobial agents of last resort’ for the treatment of methicillin-resistant $S. aureus$ (MRSA) infections in humans.

A comparison with the results of the genetic analysis of canine MRSP showed that the Canadian feline MRSP differed in all characteristics, except SCCmec type V, from the dominant canine MRSP clone in North America, which is characterized by ST68 (MLST)–C (PFGE)–t06 (spa)–V (SCCMec). In contrast, 9 of the 11 European feline MRSP isolates were identified as members of the previously described dominant clonal lineage among canine MRSP in Europe, which is characterized by ST71 (MLST)–J (PFGE)–t02 (spa)–II–III (SCCMec). This observation strongly suggested an exchange of MRSP isolates between dogs and cats in Europe. Whether the feline MRSP isolate from Canada represents a member of a new MRSP clone with a particular tropism for cats remains to be determined.

Acknowledgments

We are grateful to the institutions and diagnostic laboratories that provided MRSP isolates. We thank Fabiola Feltrin, Serena Lorenzetti, Angela Ianzano, Cinzia Onorati, Mike Schiwek and Kerstin Meyer for expert technical assistance.

Funding

This study is the result of a self-funded project conducted by all the participating institutions.
References

Legend - Characteristics of the 12 MRSP isolates from cats investigated in this study

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Country</th>
<th>Disease condition</th>
<th>SCCmec type</th>
<th>spa type</th>
<th>MLST type</th>
<th>PFGE pattern</th>
<th>Resistance phenotype</th>
<th>Resistance genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>E028</td>
<td>I</td>
<td>septicemia</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E029</td>
<td>I</td>
<td>nephritis</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>N</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E031</td>
<td>I</td>
<td>septicemia</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E037</td>
<td>I</td>
<td>septicemia</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E047</td>
<td>CH</td>
<td>rhinits</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E051</td>
<td>CH</td>
<td>wound infection</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E053</td>
<td>CH</td>
<td>urinary tract infection</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E063</td>
<td>CH</td>
<td>urinary tract infection</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E072</td>
<td>CH</td>
<td>urinary tract infection</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, tet(K), emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E076</td>
<td>NL</td>
<td>urinary tract infection</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>O</td>
<td>BLA, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E114</td>
<td>D</td>
<td>healthy</td>
<td>II–III</td>
<td>t02</td>
<td>ST71</td>
<td>J</td>
<td>BLA, TET, ML, CHL, TMP, GEN, KAN, STR, FQ</td>
<td>mecA, blaZ, emm(B), catG2205, dfqG, oxa(6′)-lactaph(2′)-Ia, aph(3′)-III, ant(6′)-Ia</td>
</tr>
<tr>
<td>E132</td>
<td>CAN</td>
<td>pneumonia</td>
<td>V</td>
<td>t23</td>
<td>ST100</td>
<td>B</td>
<td>BLA, TET</td>
<td>mecA, blaZ, tet(M)</td>
</tr>
</tbody>
</table>

a Italy; CH, Switzerland; NL, the Netherlands; D, Germany; CAN, Canada.

b BLA, b-lactam antibiotics; CHL, chloramphenicol; FQ, fluoroquinolones; GEN, gentamicin; KAN, kanamycin; ML, macrolides/lincosamides; STR, streptomycin; TET, tetracyclines; TMP, trimethoprim.