Joint Uncertainty Decoding with Unscented Transform for Noise Robust Subspace Gaussian Mixture Models

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
SAPA - SCALE Conference Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 06. Jan. 2020
Joint Uncertainty Decoding with Unscented Transform for Noise Robust Subspace Gaussian Mixture Models

Liang Lu, Arnab Ghoshal, and Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK
{liang.lu, a.ghoshal, s.renals}@ed.ac.uk

Abstract

Common noise compensation techniques use vector Taylor series (VTS) to approximate the mismatch function. Recent work shows that the approximation accuracy may be improved by sampling. One such sampling technique is the unscented transform (UT), which draws samples deterministically from clean speech and noise model to derive the noise corrupted speech parameters. This paper applies UT to noise compensation of the subspace Gaussian mixture model (SGMM). Since UT requires relatively smaller number of samples for accurate estimation, it has significantly lower computational cost compared to other random sampling techniques. However, the number of surface Gaussians in an SGMM is typically very large, making the direct application of UT, for compensating individual Gaussian components, computationally impractical. In this paper, we avoid the computational burden by employing UT in the framework of joint uncertainty decoding (JUD), which groups all the Gaussian components into small number of classes, sharing the compensation parameters by class. We evaluate the JUD-UT technique for an SGMM system using the Aurora 4 corpus. Experimental results indicate that UT can lead to increased accuracy compared to VTS approximation if the JUD phase factor is untuned, and to similar accuracy if the phase factor is tuned empirically.

1. Introduction

The accuracy of speech recognisers normally degrades significantly in noisy environments, which limits their deployment in many real world applications. One of the main barriers to improving noise robustness lies in the highly nonlinear mismatch function between clean and noise corrupted speech, which is challenging for either de-noising in feature domain or compensation in model domain. Approaches to overcome this include approximation techniques such as vector Taylor series (VTS) [1, 2] which approximate the mismatch function by truncated vector Taylor series expansions or sampling techniques such as data-driven parallel model combination (DPMC) [3] which draw samples from clean speech and noise models to synthesise noisy speech. VTS is relatively computationally efficient, as a closed form solution can be obtained. However, it may lead to biased estimates since it neglects the higher order coefficients. DPMC, on the other hand, is able to estimate the distribution of noisy speech with sufficient accuracy by drawing a large number of samples, but with heavy computational cost, making it infeasible for large vocabulary speech recognition.

Recently, the unscented transform (UT) [4] has been applied to noise compensation in both feature and model domains [5–8], and has achieved good results. Unlike DPMC, UT draws samples deterministically from the sigma points—a set of points chosen to have the same mean and covariance as the original distribution. In UT it assumed that the mean and covariance of the nonlinear system can be derived from sigma points [4], although a recent review [9] pointed out that this is not guaranteed depending on the nonlinear system and parameterisation of UT. Based on GMM system settings, UT can result in a more accurate estimate compared to first-order VTS, while its computational cost is much lower than DPMC [7, 8].

In this paper, we apply UT to compensate an SGMM acoustic model [10] against noise. Compared to conventional acoustic modelling based on GMMs, SGMMs construct a much larger number of Gaussian components, which makes compensating each component directly computationally infeasible. To address this, we apply UT in the joint uncertainty decoding (JUD) framework [11], clustering the set of Gaussian components into a smaller number of classes [7], with the compensation parameters being shared by the components belonging to the same class. This greatly reduces the computational cost without notably sacrificing the accuracy. We evaluate this approach on the Aurora 4 task, and observe that UT can successfully compensate the SGMM acoustic model within the JUD framework and lead to higher accuracy compared to VTS compensation.

The rest of the paper is organised as follows. We first review JUD in section 2, and then discuss VTS and UT noise compensation in the JUD framework. Section 3 applies JUD to SGMM acoustic model and we report experimental results in section 4 followed by conclusion in section 5.
2. Joint Uncertainty Decoding

If we denote the clean and noisy speech observations as x and y, respectively, then, for Gaussian component m, joint uncertainty decoding (JUD) [11] approximates the likelihood of noisy observations given the model as:

$$p(y \mid m) = \int p(y \mid x, m)p(x \mid m)dx$$

$$\approx \int p(y \mid x, r_m)p(x \mid r_m)dx,$$ \hspace{1cm} (1)

where x is viewed as a latent variable and r_m denotes the regression class that m belongs to. The conditional probability $p(y \mid x, m)$ indicates the effect of noise on clean speech for Gaussian component m. In JUD, the exact conditional probability $p(y \mid x, m)$ is approximated by $p(y \mid x, r_m)$, significantly reducing the computational cost if the number of r is much smaller than that of m.

The conditional distribution $p(y \mid x, r_m)$ is derived from the joint distribution of clean and noise corrupted speech which is assumed to be Gaussian. For the rth regression class

$$p\left(\begin{bmatrix} x \\ y \end{bmatrix} \mid r \right) \sim N\left(\begin{bmatrix} \mu_x^{(r)} \\ \mu_y^{(r)} \end{bmatrix}, \begin{bmatrix} \Sigma_x^{(r)} & \Sigma_{xy}^{(r)} \\ \Sigma_{yx}^{(r)} & \Sigma_y^{(r)} \end{bmatrix} \right)$$

$$\text{By marginalising the likelihood in (1), the likelihood of corrupted speech for the } m\text{th component can be approximated as:}$$

$$p(y \mid m) \approx |A^{(r)}|N\left(A^{(r)}y + b^{(r)}; \mu_m^{(r)}, \Sigma_m^{(r)} + \Sigma_b^{(r)} \right).$$

$$\text{where the JUD transformation parameters are obtained as:}$$

$$A^{(r)} = \Sigma_x^{(r)}\Sigma_{yx}^{(r)}^{-1} \hspace{1cm} (4)$$

$$b^{(r)} = \mu_x^{(r)} - A^{(r)}\mu_y^{(r)} \hspace{1cm} (5)$$

$$\Sigma_b^{(r)} = A^{(r)}\Sigma_y^{(r)}A^{(r)\top} - \Sigma_x^{(r)} \hspace{1cm} (6)$$

The transformation parameters, $\mu_x^{(r)}$ and $\Sigma_x^{(r)}$, can be estimated from the clean speech model using a regression tree, $\mu_y^{(r)}$, $\Sigma_y^{(r)}$ and the cross covariance $\Sigma_{xy}^{(r)}$ can be obtained by the following mismatch function:

$$y_s = x_s + h_s + C \log \left[1 + \exp \left(C^{-1}(n_s - x_s - h_s) \right) + 2\alpha \bullet \exp \left(C^{-1}(n_s - x_s - h_s)/2 \right) \right]$$

$$= f(x_s, n_s, h_s, \alpha),$$ \hspace{1cm} (7)

where the subscript s denotes the static parameters, and 1 is the unit vector. Here, $\log(\cdot)$, $\exp(\cdot)$ and \bullet denote the element-wise logarithm, exponentiation and multiplication. n_s and h_s are static additive and convolutional noise, respectively. C is the truncated discrete cosine transform (DCT) matrix, and C^{-1} indicates its pseudoinverse. α denotes the phase factor [12, 13].

2.1. Joint uncertainty decoding with VTS

As in standard noise compensation, in equation (7) additive noise is modelled by a single Gaussian $n \sim \mathcal{N}(n_s, \Sigma_n)$, and the convolutional noise is assumed to be constant $h = \mu_h$. The mismatch function is highly non-linear, which makes it difficult to derive the parameters for the noise corrupted speech y. We may use a first order VTS approximation [1] to linearise the mismatch function around the expansion point $\{\mu_x^{(r)}\}, \mu_h, \mu_n\}$, which results in:

$$y_s | r \approx f(\mu_x^{(r)}, \mu_h, \mu_n, \alpha) + G_x^{(r)}(x_s - \mu_x^{(r)})$$

$$+ G_n^{(r)}(n_s - \mu_n).$$

$$G_x^{(r)}$$ and $G_n^{(r)}$ denote the Jacobian matrices:

$$G_x^{(r)} = \frac{\partial f(\cdot)}{\partial x_s}\mu_x^{(r)}, G_n^{(r)} = I - G_x^{(r)}.$$

By taking expectations, we can obtain

$$\mu^{(r)} = f(x_s, \mu_h, \mu_n, \alpha) \hspace{1cm} (10)$$

$$\Sigma^{(r)} = G_x^{(r)}\Sigma_x^{(r)}G_x^{(r)\top} + G_n^{(r)}\Sigma_n^{(r)}G_n^{(r)\top} \hspace{1cm} (11)$$

$$\Sigma_{yx}^{(r)} = G_x^{(r)}\Sigma_{xy}^{(r)} \hspace{1cm} (12)$$

The dynamic parameters can be derived from a continuous time approximation [14]:

$$\Delta y_t \approx \frac{\partial y}{\partial t} = \frac{\partial y}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial y}{\partial n} \frac{\partial n}{\partial t} \Rightarrow$$

$$\approx \frac{\partial y}{\partial x} \Delta x_t + \frac{\partial y}{\partial n} \Delta n_t \hspace{1cm} (13)$$

Hence, by taking expectations we obtain:

$$\mu^{(r)} \approx G_x^{(r)}\mu^{(r)} \hspace{1cm} (14)$$

$$\Sigma^{(r)} \approx G_x^{(r)}\Sigma_x^{(r)}G_x^{(r)\top} + G_n^{(r)}\Sigma_n^{(r)}G_n^{(r)\top}.$$ \hspace{1cm} (15)

Similar expressions can be obtained for delta-delta coefficients. For the cross covariance, we can also obtain

$$\Sigma^{(r)} \approx G_x^{(r)}\Sigma_{xy}^{(r)}G_x^{(r)\top}.$$ \hspace{1cm} (16)

Here we have assumed $\mathbb{E}[\Delta n] = 0$. The non-zero assumption of the dynamic coefficients for additive noise mean has been investigated [13], but the results indicate that it does not lead to improvement when compensating the clean speech variance.

2.2. Joint uncertainty decoding with UT

Unlike VTS which approximates the nonlinear function by a linear function to estimate the distribution of y, sampling approaches draw samples from the distributions of x and n to synthesise noisy samples from which to estimate its distribution\(^{1}\). UT is a deterministic sampling

\(^{1}\)We don’t draw samples for h because we assume its distribution is a delta function as in section 2.1.
approach. Let \(z = \begin{bmatrix} x_s \\ n_s \end{bmatrix} \) be the combined vector, then UT draws samples as

\[
\begin{align*}
\mathbf{z}_0^{(r)} &= \mu_z^{(r)}, \\
\mathbf{z}_i^{(r)} &= \mu_z^{(r)} + \sqrt{(2d + \kappa)\Sigma_z^{(r)}}_i, \\
\mathbf{z}_{i+d}^{(r)} &= \mu_z^{(r)} - \sqrt{(2d + \kappa)\Sigma_z^{(r)}}_i,
\end{align*}
\]

where \(i = 1, \ldots, d \), and \(\sqrt{A} \) and \([A]_i \) denote the Cholesky decomposition and \(i \)-th column of the matrix \(A \) respectively. \(\kappa \) is a tuning parameter, \(d \) is the dimensionality of \(z \), and

\[
\mathbf{\mu}_z^{(r)} = \begin{bmatrix} \mathbf{\mu}_z^{(r)}_s \\ \mathbf{\mu}_n^{(r)} \end{bmatrix}, \quad \Sigma_z^{(r)} = \begin{bmatrix} \Sigma_z^{(r)}_s & 0 \\ 0 & \Sigma_{n,s} \end{bmatrix}.
\]

After obtaining the noise and clean speech samples \(\{n_0, \ldots, n_{2d}\} \) and \(\{x_0, \ldots, x_{2d}\} \), the noise corrupted speech samples \(\{y_0, \ldots, y_{2d}\} \) can be derived by the mismatch function (7) and the static parameters can be obtained by

\[
\begin{align*}
\mathbf{\mu}_{ys}^{(r)} &= \sum_{i=0}^{2d} w_i y_i, \\
\Sigma_{ys}^{(r)} &= \sum_{i=0}^{2d} w_i y_i y_i^T - \mathbf{\mu}_{ys}^{(r)}\mathbf{\mu}_{ys}^{(r)T}, \\
\Sigma_{gxs}^{(r)} &= \sum_{i=0}^{2d} w_i y_i x_i^T - \mathbf{\mu}_{gxs}^{(r)}\mathbf{\mu}_{gxs}^{(r)T},
\end{align*}
\]

where the weights are defined in UT as

\[
w_0 = \frac{\kappa}{d + \kappa}, \quad w_i = \frac{1}{2(d + \kappa)}.
\]

In this work, we set \(\kappa = 1/2 \) to give the equal weight to all the samples [4]. For the dynamic coefficients, we still use the continuous time approximation which requires linearisation as VTS. Unlike equation (9), the Jacobian is obtained by all the samples rather than just the mean as

\[
\mathbf{G}_{x}^{(r)} = \sum_{i=0}^{2d} w_i \frac{\partial f(\cdot)}{\partial x_i} x_i, \quad \mathbf{G}_{n}^{(r)} = I - \mathbf{G}_{x}^{(r)}
\]

In this work, however, we found that using the Jacobian (25) to linearise the static covariance \(\Sigma_{ys} \) and \(\Sigma_{gxs} \) can achieve better results, as the static and dynamic coefficients are derived in a consistent fashion.

3. Joint Uncertainty Decoding for SGMMs

In the SGMM acoustic model [10], the HMM state is modelled as:

\[
P(y_t \mid j, i, \mathcal{M}_n) = \sum_{k=1}^{K_j} c_{jk} \sum_{i=1}^{I} w_{jki} \mathcal{N}(y_t \mid \mu_{jki}, \Sigma_i) \quad (26)
\]

\[
\mu_{jki} = M_i v_{jk} \quad (27)
\]

\[
w_{jki} = \frac{\exp w_{T}^T v_{jk}}{\sum_{i'=1}^{I} \exp w_{i'}^T v_{jk}} \quad (28)
\]

where \(t \) denotes the time frame, \(j \) the HMM state index, \(k \) the sub-state index [10], \(I \) the number of Gaussians, and \(K_j \) the number of sub-states in state \(j \). \(c_{jk} \) is a sub-state mixture coefficient and \(\Sigma_i \) is the \(i \)-th covariance matrix. \(v_{jk} \in \mathbb{R}^S \) is referred to as the sub-state vector, where \(S \) denotes the subspace dimension. The matrices \(M_i \) and the vectors \(v_i \) span the model subspaces for Gaussian means and weights respectively, and are used to derive the GMM parameters given sub-state vectors (equations (27) and (28)). As the number of Gaussians is very large, a universal background model (UBM) is also introduced, which is a mixture of full covariance Gaussians of size \(I \), to initialise the model and prune the Gaussians for both training and decoding.

In [15], we have shown that using UBM as the regression model for JUD works well for SGMM acoustic models in terms of both accuracy and computational cost. By this approach, given the JUD transforms the likelihood becomes:

\[
P(y_t \mid j, \mathcal{M}_n) = \sum_{k=1}^{K_j} c_{jk} \sum_{i=1}^{I} w_{jki} \mathcal{N}(A^{(i)}|y_t + b^{(i)}; \mu_{jki}, \Sigma_i + \Sigma_b^{(i)})
\]

where \(A^{(i)}, b^{(i)} \) and \(\Sigma_b^{(i)} \) are derived from the \(i \)-th Gaussian in the UBM together with the noise model, \(\mathcal{M}_n \) denotes the noise model as \(\mathcal{M}_n = \{\mu_n, \Sigma_n, \mu_b\} \). To estimate the noise model \(\mathcal{M}_n \), we applied the gradient based approach for JUD-UT system to optimise the auxiliary function as

\[
Q(\mathcal{M}_n) = \sum_{jki} \gamma_{jki}(t) \left[\log |A^{(i)}| + \log \mathcal{N}(A^{(i)}y_t + b^{(i)}; \mu_{jki}, \Sigma_i + \Sigma_b^{(i)}) \right]
\]

where \(\gamma_{jki}(t) = p(j, k, i \mid y_t) \) is the Gaussian component posterior. The same was also used for the JUD-VTS system in [15].
Table 1: WERs of noise compensation by JUD on SGMM systems with $\alpha = 0$.

<table>
<thead>
<tr>
<th>Methods</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean model</td>
<td>5.2</td>
<td>58.2</td>
<td>50.7</td>
<td>72.1</td>
<td>59.9</td>
</tr>
<tr>
<td>MTR model</td>
<td>6.8</td>
<td>15.2</td>
<td>18.6</td>
<td>32.3</td>
<td>22.2</td>
</tr>
<tr>
<td>JUD-VTS init</td>
<td>5.3</td>
<td>22.5</td>
<td>36.8</td>
<td>47.4</td>
<td>32.9</td>
</tr>
<tr>
<td>+1st iter</td>
<td>5.1</td>
<td>15.8</td>
<td>24.6</td>
<td>33.8</td>
<td>23.4</td>
</tr>
<tr>
<td>+2nd iter</td>
<td>5.1</td>
<td>15.0</td>
<td>19.8</td>
<td>29.7</td>
<td>20.9</td>
</tr>
<tr>
<td>+UT re-est</td>
<td>5.0</td>
<td>14.0</td>
<td>20.7</td>
<td>28.4</td>
<td>20.0</td>
</tr>
<tr>
<td>JUD-UT init</td>
<td>5.2</td>
<td>19.8</td>
<td>36.9</td>
<td>44.7</td>
<td>30.6</td>
</tr>
<tr>
<td>+1st iter</td>
<td>4.9</td>
<td>15.0</td>
<td>23.4</td>
<td>30.6</td>
<td>21.6</td>
</tr>
<tr>
<td>+2nd iter</td>
<td>4.9</td>
<td>14.3</td>
<td>18.4</td>
<td>26.9</td>
<td>19.3</td>
</tr>
</tbody>
</table>

4. Experiments

We evaluated the JUD-UT noise compensation for SGMMs on the Aurora 4 corpus, which is derived from the Wall Street Journal (WSJ0) 5k-word closed vocabulary transcription task. The clean training set contains about 15 hours audio, and Aurora 4 provides a noisy version, which allows multi-condition training (MTR). The test set has 300 utterances from 8 speakers. The first test set which allows multi-condition training (MTR). The test set all the coefficients of α empirically to be a fixed value $\alpha = 2.0$. A non-zero value of α is able to compensate for the linearisation bias [8].

4.2. Analysis of the effect of phase factors

To gain further insight to the effect of phase term, we calculated the total variance of $\Sigma_i + \Sigma_i^\prime$ and averaged it by I and the number of test utterances. The plot is shown in Figure 2 for JUD-UT system. The average value of
the covariance of JUD-VTS system is very close to that of JUD-UT system, and the plot is omitted in the figure for clarity. The average value of covariance shows a similar trend to that of the WER when using different values of phase factors. This is not unexpected if one interprets the value of covariance as indicating the degree of “uncertainty” of the model. A small covariance may indicate that the model is more confident to explain the data, and if this confidence is gained from more accurate model compensation, it is expected to result in lower WER. However, the absolute value in the figure is not intuitive as the features were first transformed into another feature space by the JUD transformation \((A^{(i)}, b^{(i)})\).

To investigate the effect of phase factors to different noise conditions, we show the results of JUD with UT compensation for SGMM systems.

In this paper, we applied the unscented transform (UT) to estimate the nonlinear mismatch function for noise robust speech recognition based on subspace Gaussian mixture models (SGMMs). To reduce computational cost, we employed UT in the framework of joint uncertainty decoding (JUD). In this framework, we compared the performance of UT to first-order vector Taylor series (VTS) approximation by using the same noise model or with its own noise model estimation. Based on the Aurora 4 dataset, we showed that JUD-UT can lead to better estimation accuracy than JUD-VTS system. We also discussed the effect of phase factor for JUD-UT system, and observe the similar trend compared to JUD-VTS system. By tuning the value of phase factors empirically, we can obtain similar accuracy by the two systems. We also analysed the effect of phase factors in terms of WERs in different noise conditions, and model covariance. Future work may include noise adaptive training [17] with both VTS and UT noise model estimation and compensation.

6. References

Table 2: WERs of each test set with regards to the value of phase factor for JUD with UT system. “restau.” indicates restaurant noise condition.

<table>
<thead>
<tr>
<th>α</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clean</td>
<td>car</td>
<td>babble</td>
<td>street</td>
</tr>
<tr>
<td>0</td>
<td>4.9</td>
<td>7.6</td>
<td>14.0</td>
<td>20.4</td>
</tr>
<tr>
<td>0.5</td>
<td>5.0</td>
<td>7.5</td>
<td>13.2</td>
<td>18.8</td>
</tr>
<tr>
<td>1.0</td>
<td>4.9</td>
<td>7.3</td>
<td>12.7</td>
<td>18.0</td>
</tr>
<tr>
<td>1.5</td>
<td>5.1</td>
<td>7.4</td>
<td>12.4</td>
<td>18.1</td>
</tr>
<tr>
<td>2.0</td>
<td>5.0</td>
<td>7.4</td>
<td>12.5</td>
<td>18.1</td>
</tr>
<tr>
<td>2.5</td>
<td>5.4</td>
<td>7.4</td>
<td>12.9</td>
<td>18.4</td>
</tr>
<tr>
<td>3.0</td>
<td>5.4</td>
<td>7.4</td>
<td>13.1</td>
<td>18.3</td>
</tr>
<tr>
<td>3.5</td>
<td>5.6</td>
<td>7.4</td>
<td>13.1</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Table 3: WERs of each test set with regards to the value of phase factor for JUD with VTS system.

<table>
<thead>
<tr>
<th>α</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clean</td>
<td>car</td>
<td>babble</td>
<td>street</td>
</tr>
<tr>
<td>0</td>
<td>5.1</td>
<td>7.6</td>
<td>14.5</td>
<td>22.0</td>
</tr>
<tr>
<td>0.5</td>
<td>5.0</td>
<td>7.3</td>
<td>13.5</td>
<td>19.2</td>
</tr>
<tr>
<td>1.0</td>
<td>5.1</td>
<td>7.4</td>
<td>13.0</td>
<td>18.0</td>
</tr>
<tr>
<td>1.5</td>
<td>5.1</td>
<td>7.2</td>
<td>12.7</td>
<td>18.2</td>
</tr>
<tr>
<td>2.0</td>
<td>5.0</td>
<td>7.4</td>
<td>12.5</td>
<td>17.8</td>
</tr>
<tr>
<td>2.5</td>
<td>5.0</td>
<td>7.4</td>
<td>12.4</td>
<td>17.9</td>
</tr>
<tr>
<td>3.0</td>
<td>5.1</td>
<td>7.4</td>
<td>12.7</td>
<td>18.0</td>
</tr>
<tr>
<td>3.5</td>
<td>5.2</td>
<td>7.4</td>
<td>12.9</td>
<td>18.2</td>
</tr>
</tbody>
</table>

