The Hippo Pathway, YAP/TAZ and the Plasma Membrane

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.tcb.2019.10.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Trends In Cell Biology

Publisher Rights Statement:
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Hippo Pathway, YAP/TAZ, and the Plasma Membrane

Valentina Rausch¹,² and Carsten G. Hansen¹,²,*

The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.

Cellular Regulation by the Hippo Pathway

The plasma membrane is essential for cell integrity and serves as an interface to sense and respond to changes in the extracellular environment [1]. A large variety of plasma membrane domains, such as, adherens and tight junctions (see Glossary), focal adhesions (FAs), clathrin-coated pits (CCPs) or plaques, caveolae, and primary cilia [2–8], allow the cell to dynamically relay chemical and mechanical stimuli, which are translated into direct cellular responses. The plasma membrane as a whole, but FAs in particular, strongly interacts with the extracellular matrix (ECM) [9]. The ECM is a dynamic noncellular matrix surrounding cells and tissues that acts as a scaffold for cell anchorage and mechanotransduction [9]. The signals perceived by plasma membrane elements are integrated and transmitted by a variety of signaling pathways. One central pathway, which enables the cell to respond to various signals, is the Hippo pathway (Box 1) [10–13]. By highly context specific responses the Hippo pathway regulates cellular homeostasis and plays central roles in carcinogenesis and regenerative processes [10,12,13]. The Hippo pathway is extracellularly regulated by mechanical stimuli and diffusible chemicals. These signals are sensed in great part by receptors, such as G-protein coupled receptors (GPCRs) and adherence complexes embedded in the plasma membrane [1,10–16]. To ensure a highly specific response, junctional complexes and receptors accumulate in distinct membrane structures and their plasma membrane abundance is furthermore dynamically regulated by exo- and endocytosis [3,4,7,17]. Junctional complexes provide robust cellular sensitivity of Hippo signaling to cell polarity and cell–cell contacts [10,15,16]. Catenins [18,19], protein tyrosine phosphatase non-receptor (PTPN)14 [20,21], and the angiomotin family [22–26] play central roles in this regulation as direct YAP-binding proteins. Both PTPN14 and AMOT interact via PPxY motifs with WW domains of YAP and TAZ, and consequently, this interaction does not directly require YAP and TAZ Hippo-pathway-mediated phosphorylation [20–23]. Several of the Hippo pathway components temporally localize to junctional complexes, including YAP and TAZ, KIBRA, LATS1/2, neurofibromatosis type 2 (NF2), and MST1/2 [24,26–29]. At the junctional location the upstream Hippo pathway components are activated, and consequently, YAP/TAZ are inhibited. As cellular junctions function as mechanical cellular transducers, this spatiotemporal localization of Hippo pathway components brings them proximal to sense the exerted forces. The interplay between cellular junctions and the Hippo pathway is well established [10,15,16]. Here, we discuss recent evidence highlighting that additional plasma membrane domains, such as FAs, CCPs and plaques, caveolae, and primary cilia provide cellular feedback via the Hippo pathway.

The Hippo Pathway, YAP/TAZ, Integrins, and FAs

Clustering of integrins increases the avidity of the multivariant interactions with the ECM substrate [30,31]. FAs are large dynamic multiprotein complexes comprised of several distinct layers of proteins with the integral components integrins, vinculin, talin, and focal adhesion kinase (FAK) [6], and
thereby relay mechanical responses from large integrin complexes at the plasma membrane. FAs thereby provide mechanical links between the intracellular cytoskeleton and the ECM. These protein complexes function as mechanosensors and -integrators and coordinate a diverse array of signaling molecules [6], including the Hippo pathway [32].

Integrins, via the tyrosine kinase SRC, as well as FAK activate YAP [32–37]. Increased ECM stiffness, relayed especially via β1 integrins, activates FAK, which in turn activates the tyrosine kinase SRC.
SRC subsequently phosphorylates and activates YAP while also phosphorylating and inhibiting LATS1/2. Consequently, this activates YAP via two separate means (Figure 1A, Box 1) [32,35-37]. Conversely, upon FAK inhibition, YAP nuclear localization and activity are reduced even upon fibroblast stimulation (Figure 1B) [32]. PAK-family kinases are serine/threonine kinases that regulate FA dynamics and also inhibit LATS-mediated YAP phosphorylation. FAK activates PAK1 via AKT serine/threonine kinase 1 or the small GTPases, CDC42 or RAC. PAK1 phosphorylates and inactivates the upstream Hippo kinase activator NF2. As a result, LATS-mediated inhibitory YAP phosphorylation is downregulated (Figure 1C) [36,38,39]. RAP2 (Ras-related GTPase) facilitates integrin-mediated cell adhesion [40]. RAP2 is an upstream regulator of the Hippo pathway in response to mechanical stimuli and transmits changes in ECM stiffness to the cell and regulates YAP/TAZ activity [41]. At low ECM rigidity, RAP2 activates Rho GTPase-activating protein (RhoGAP), ARHGAP29, and MAP4Ks, which leads to LATS1/2 activation and inhibitory phosphorylation of YAP/TAZ (Figure 1D) [41-43]. Consequently, upon RAP2 deletion YAP/TAZ remain active, even at low ECM stiffness [41]. Rho-GTPases, integral parts of FA assembly and stability, activate YAP and TAZ [34,44,45]. The p190 Rho-GAPs p190A and p190B are RhoA GAPs and predominantly function through RhoA inactivation. Loss-of-function mutations of p190A, encoded by ARHGAP35, are a frequent occurrence in cancers such as uterine, bladder, stomach, and lung cancers. Depletion of epithelial p190A and/or p190B (encoded by ARHGAP5) leads to increased RhoA activity [46,47], which causes YAP activation [48]. The epithelial p190A/p190B-deficient cells do not have any gross defects in adherens or tight junction formation, but instead have increased FAs [48]. Both p190A and p190B are repressors of contact inhibition of proliferation (CIP) [47,48]. Likewise, YAP/TAZ activity is repressed upon cell–cell contact [18,49]. p190 RhoGAPs inhibit the Rho–ROCK pathway, which activates LATS1/2 and represses YAP activity and consequently promotes CIP [48].

Upon mechanical stress, the PDZ and LIM domain containing Enigma proteins bind to α-actinin and actin stress fibers at FAs. Enigma proteins appear to serve as binding platforms for YAP. Association of YAP with this complex facilitates the SRC-mediated activating tyrosine phosphorylation. This protein complex enables YAP nuclear translocation and consequently YAP-mediated gene transcription [50]. The combined cellular depletion of the two Enigma proteins (encoded by PDLIM5 and PDLIM7) renders YAP cytosolic and intriguingly even appears to override the Hippo-pathway-mediated regulation of YAP [50].

Additional levels of mechanoregulation of YAP occurs directly at the nuclear pore, some of which might be FA mediated. The nucleus is elongated upon increased substrate stiffness and tensile stresses, which, via the linker of nucleoskeleton and cytoskeleton (LINC) complex [51], provides a three-way feedback between the adhesions, cytoskeleton, and nucleus [52,53]. This response originates from ECM–FA interactions and is relayed via stress fibers that stretch the nucleus [52,53], resulting in the widening of the nuclear pore, allowing YAP to enter the nucleus and activate gene transcription [54]. However, the nucleus is itself mechanosensitive, as exerting tension on isolated nuclei induces stiffening of the nucleus [55], and stretching of the nuclear membrane directly leads to YAP nuclear translocation [54] implying that FAs, under certain circumstances, are not needed for this nuclear-mediated YAP filtering. It is still unclear how the nuclear pore retains selectivity upon stretching, and also what role the Enigma proteins (if any) might play in this process [54].

Remodeling of the actin cytoskeleton directly affects FA dynamics and is also a key mediator of YAP/ TAZ activity [33,34,37]. In both mammals and zebrafish, YAP/TAZ activation regulates RhoGAPs, which consequently remodels the cytoskeleton, and this in return affects the initiation and maintenance of FAs [32,33,56]. YAP/TAZ induction of ARHGAP18 causes increased cytoskeletal tension [57], while YAP induced activation, in a cell-type-dependent manner, of either ARHGAP28 or ARHGAP29, results in F-actin destabilization [37,58,59]. Besides interaction with the cytoskeleton, regulation of FA components via YAP/TAZ is key for FA integrity and dynamics [37,56,60,61]. Expression of distinct integrins (e.g., αVβ1 and αVβ3) and FA components are directly or indirectly regulated by YAP/TAZ–TEAD. Loss of YAP/TAZ–TEAD activity therefore dramatically changes the overall cellular composition of integrins [56,59]. Furthermore, loss of YAP induces disruption of integrin subunit interaction [56]. In YAP-deficient cells integrin heterodimer formation is reduced and single transmembrane proteins desmoglyens (Dsgs) and desmocollins (Dscs), as well as the cytoplasmic localized tarmadillo family proteins, plakoglobin (γ-catenin), and the plakophils (Pkp1–3). Desmosomes tether intermediate filaments to the plasma membrane and neighboring cells and are essential for stable intercellular cohesion [148].

Focal adhesions (FAs): clusters of proteins; mainly integrins, FAKs, talins, vinculins, paxilins, etc. FAs are located in the plasma membrane and interact with the ECM and the cytoskeleton. They provide an interface with the ECM and transmit mechanical stimuli through multiple cellular signaling pathways [6].

Integrins: heterodimeric transmembrane adhesion receptors composed of α and β subunits, forming 24 different mammalian integrins, which differ in their binding capacity and cell-type-dependent expression [30,31]. The adhesion receptors are central in several types of plasma membrane complexes, FAs, and clathrin-coated structures. Integrins bind ECM fibrils while the intracellular portion interacts with the cytoskeleton. Integrins can be bidirectionally activated by receiving signals from the ECM as well as the cytoskeleton [30,31].

Primary cilia: plasma membrane organelle formed during growth arrest. It is nonmotile and comprises a set structure of microtubules [7,135]. Due to the dynamic localization of specific receptors, ion channels, and transporters, this membrane evagination has a central role in cell signaling. Consequently, primary cilia serves as a sensory cellular extension that coordinates key cellular functions [7,135,142].
consequently the number of FAs is decreased [56,61]. Moreover, YAP deficiency leads to decreased transcription of genes encoding FA components (e.g., vinculin and zyxin) as well as diminished S157 phosphorylation of the actin docking protein (VASP); a site that is required for VASP localization at FAs. As a consequence, the interaction between FAs and the cytoskeleton is disrupted and subsequently reduces FAs in YAP-deficient cells [56]. YAP–TEAD in breast cancer cells directly induces expression of the adhesive matrix glycoprotein thrombospondin (THBS)1, which activates FAK [60] (Figure 1E). In addition, YAP-induced ECM components, such as collagens and fibronectin, provide an additional feed-forward loop that activates FAK [41,56,61]. YAP is required for a specialized type of directed cell migration termed durotaxis [35]. During durotaxis, anisotropic mechanical stimulation prompts directed motility through FA and the actomyosin cytoskeleton [41,56,61], and cells respond to a gradient of extracellular stiffness by migrating toward increasing matrix stiffness [35,62,63]. FAs mediate via dynamic actin polymerization an oscillating traction force, which mechanically directs this motility, and both functional FAK as well as YAP are essential [35,62–64]. Durotaxis has wide implications in both development and cancer [35,62–64]. FAK activation in return promotes FA stability and tumor invasiveness [60]. In flies, Yki (YAP ortholog) induces Stretchin–Mlck-mediated myosin activation, which leads to cellular tension and promotes cell growth [65]. An example of the importance of the complex and integrated FA–YAP/TAZ–TEAD cellular interplay is that in stem cells of the mouse incisor an integrin α3–FAK–CDC42 signaling axis leads to a decrease in the LATS-mediated inhibitory S397 YAP phosphorylation [66] (Figure 1F). As a result, YAP translocates to the nucleus and induces Rheb expression and consequently activates mTOR signaling [66]. Integration of mTOR with the Hippo pathway via YAP/TAZ–TEAD-regulated gene induction of prominent mTOR activators is a widespread phenomenon [67–69], and through this it regulates metabolism, cell competition, and cell proliferation.
size [67–69]. YAP/TAZ–TEAD drives expression of the heterodimeric disulfide-linked plasma membrane resident CD98 (encoded by SLC7A5 and SLC3A2) [67,69]. CD98, also known as LAT1, is an amino acid transporter that transports essential amino acids, such as leucine, into the cell, which activates mTOR [70], but CD98 also functions as a mediator of integrin-dependent adhesion [70–73]. CD98 is frequently overexpressed in cancer and increased expression of CD98 activates YAP/TAZ, providing a feed-forward loop [67,69,72]. This integration with mTOR might explain how integrin α3β1 increases proliferation and sustained tumor growth in skin cancer, and further indicates the complexity of YAP/TAZ and FA interactions, that influence cell integrity and cell fate [66,74].

Overall, FAs and integrins are key mechanosensory elements of the cell and regulate YAP activity in response to mechanical cues [32,35–37]. The interplay and integrated feedback mechanism between the ECM, integrins, FA, cytoskeleton, and Hippo pathway on multiple levels provide a robust way for cells to differentially respond to dynamic changes.

The Hippo Pathway, YAP/TAZ, Clathrin-Coated Pits, and Clathrin-Coated Structures/Plaques/Lattices

CCPs (Box 2) and clathrin-coated structures/plaques/lattices (CCSs) are specialized areas in the plasma membrane with accumulations of clathrin, which are primed for selective endocytosis, but also function as adhesion complexes [3,4,75,76]. CCPs and CCSs interact closely with the actin

Box 2. Clathrin-Coated Pits

CCPs transiently assemble at the plasma membrane and are primed to pinch off the membrane in a dynamin-dependent and highly coordinated process termed clathrin-dependent endocytosis [3] (Figure II). This endocytic process is a strictly regulated and efficient process that selects and concentrates cargo molecules (such as receptors and ligand bound receptors); these specific extracellular constituents are then internalized [3,4,75,80,165]. Clathrin-dependent endocytosis (CDE) is fast (the coordinated process from initiation of invagination to fully pinched off vesicles frequently occurs within minutes) [76,80]. CDE is an adaptable process, as sorting into CDE, the rate of CDE and intracellular sorting of cargo is regulated by cellular stimuli [4,75,80,165]. CDE therefore plays major roles in cellular metabolism, and the ability of cells to respond to and differentiate between various cellular stimuli. CDE is a prominent way for cells to downregulate cell surface receptors, but CDE is also important in absorption of essential nutrients, such as by the uptake of the well-established CDE ligand transferrin, and the activation of intracellular signal transduction cascades [4,75,80,165].

Figure II. Clathrin-Coated Pits.
cytoskeleton [77–80]. Actin is involved in the endocytic event and both CCPs and especially CCSs appear to act as platforms for cytoskeletal organization [77–80]. Disruption of the actin–clathrin cross-talk disorganizes the intermediate filament network [78,81]. CCPs are stiffer than the plasma membrane, which is partly due to the rigidification of the clathrin coat by accessory proteins such as the AP2 adaptor complex [82]. CCPs in some instances form from CCSs [3,4,75,76]. In a context- and size-dependent manner, CCPs and CCSs regulate cell adhesion, mechanotransduction, and endocytosis [3,4,75,76].

CCSs, in association with dynamin (DNM2), a large GTPase that acts as a mechanochemical scaffolding molecule [3,4], sense and transduce mechanical stimuli at the plasma membrane and regulate YAP/TAZ activity [79]. Upon mechanical stimulation, YAP appears to associate with branching actin filaments and accumulate around CCSs and CCPs. Importantly, YAP/TAZ interacts with the central CCP component DNM2 [79] (Figure 2A,B). The spatiotemporal accumulation of YAP/TAZ at actin filaments surrounding clathrin-coated structures is an additional regulatory mechanotransductive complex. However, details on how YAP/TAZ are recruited to these plasma membrane structures remain to be elucidated.

αVβ5 integrins are central to CCS stability. The interaction of αVβ5 with the ligand vitronectin and their subsequent clustering is mediated via clathrin adaptor proteins, which is indispensable for assembly of most CCSs [83]. Knockdown of αVβ5 leads to loss of large and static CCSs, while over-expression results in more stable CCSs [84]. αVβ5 integrins are especially important as mechanotransducers on rigid surfaces. Inhibition of αVβ5 reduces YAP/TAZ activity, highlighting the importance of feedback regulation between integrins, clathrin, and the Hippo pathway (Figure 2C) [84,85].

Figure 2. Hippo Pathway and Clathrin-Coated Pits and Plaques.
Clathrin-coated structures at the plasma membrane are endocytic active structures, but also function as adhesion complexes. Most interactions between YAP/TAZ and clathrin-coated pits (A and D) as well as plaques (B and C) lead to the activation of YAP (and TAZ), in particular, as a response to mechanical stress (A and B). (A) Mechanical stimuli induce association of YAP/TAZ with dynamin 2 and YAP/TAZ activity is increased by actin filaments accumulated around clathrin-coated structures (CCSs). (B) Mechanical forces are transduced at clathrin-coated pits (CCPs) via associated actin filaments and induce YAP/TAZ activity. (C) Inhibition of αVβ5 integrins reduces YAP/TAZ activity. (D) Interaction of tissue inhibitor of metalloproteinase 1 (TIMP1) with CD63 and integrin β1 activates SRC and RhoA-mediated actin assembly, leading to LATS1/2 inhibition and YAP/TAZ activation.
Moreover, in the absence of CCSs, αVβ5 integrins shuttle to FAs, functionally linking clathrin-coated structures with FAs [84–87]. Clathrin light chain (CLC)a is required for FAK localization at the adherent surface during cell spreading, as well as integrin-dependent FAK and SRC activation. CLCa deficiency inhibits FA maturation, emphasizing the importance of clathrin for plasma membrane mechanotransductive complexes [88]. The direct interplay between clathrin and FAs in the context of YAP/TAZ is yet to be explored.

Membrane-type 1 matrix metalloproteinases (MT1-MMPs) are endocytosed predominately in a clathrin-dependent manner [89]. Deficiency of MT1-MMP reduces ECM fibronectin proteolysis and integrin α5β1 endocytosis. This causes an imbalance between ECM turnover and overall increased ECM degradation [90,91]. Consequently, clathrin might influence ECM properties by mediating MT1-MMP turnover, which in turn influences YAP/TAZ activity. Furthermore, the tissue inhibitor of metalloproteinase (TIMP)1 complexes with MT1-MMP and blunts its enzymatic function [92]. TIMP1 expression is elevated in a range of cancers, where TIMP1 complexes with CD63 and integrin β1, which activates SRC and promotes RhoA-mediated actin assembly. As a consequence, LATS1/2 are inhibited, leading to activation of YAP/TAZ, favoring cell proliferation (Figure 2D) [93].

The cellular internalization rate of receptors commonly taken up via clathrin, such as VE-cadherin [94,95], shown in experiments with pulse-labeled VE-cadherin molecules at cell junctions is decreased upon YAP/TAZ depletion [94]. YAP/TAZ therefore appear to regulate the turnover of CCPs and CCSs. Further detailed analysis is needed to establish exactly how the endocytic machinery is regulated by YAP/TAZ. However, YAP/TAZ drive cytoskeletal dynamics [37,57–59] and clathrin-dependent endocytosis likewise relies on actin forces [4,80], and thus the cytoskeleton might be central in this regulation. How widespread this process is, and potential further cellular feedback still needs to be established. CCSs and CCPs engage in a range of cell-type-dependent and dynamic mechanosensory and endosomal functions, and consequently, the links to the Hippo pathway and YAP/TAZ activity are likewise expected to be versatile.

The Hippo Pathway, YAP/TAZ, and Caveolae

Caveolae are 50–80-nm invaginations of the plasma membrane and are composed of specialized lipids and caveolin (CAV)1–3, cavin 1–4, EHD, and pacsin proteins [2,5,96]. Caveolae-deficient patients and animal models have lipid and muscular dystrophies [97–102]. A principal function of caveolae is mechanosensing and -protection [96,99,103–107]. Endothelial cells, adipocytes, and myocytes need constantly to adapt to changes in mechanical stresses, and consequently it might not be coincidental that they harbor a large number of caveolae [108]. Under increased mechanical forces in stretched cells and upon osmotic shock, caveolae appear to flatten and thereby regulate cellular surface to volume ratio, which, at least in cell types with abundant caveolae, are thought to provide a plasma membrane buffering capacity (Box 3). In the process of flattening the membrane-associated part of the caveolar protein complex (e.g., cavin and EHDs) dissociates from the membrane [99,105,109]. Although on the surface there appear to be overlapping functions between caveolae and the Hippo pathway, a direct interdependence of central caveolae elements and the Hippo pathway has only recently been identified (Figure 3) [110,111].

YAP/TAZ are, via TEAD activation, essential for caveolae expression in both mammalian cell culture and in zebrafish [111]. In YAP/TAZ-deficient cells the expression levels of CAV1 and CAV1 are decreased by >85% [111]. This dramatic effect is caused by cell intrinsic activity and mediated via YAP/TAZ activation of TEAD. YAP/TAZ knockout therefore causes a remarkable loss of caveolae and YAP/TAZ-deficient cells therefore lose an entire cellular organelle [111]. Shear stress induces YAP/TAZ activity [112,113]; a process that is partly caveolae dependent [111] and transduced via the Hippo pathway, which regulates the transcription of ECM components [59,61,111]. Caveolae prevent rupture of endothelial plasma membranes under physiological hemodynamic force [103,109]. Healthy shear stress sensing and cellular response are crucial, as they shape the vascular system during development [114]. Dysfunctioning endothelial shear stress sensing and transduction in adult life is a major cause of atherosclerosis and vascular malformations [114]. It is possible that dysfunctioning
interplay between the Hippo pathway and caveolae underlies these disease states. Although the exact mechanism by which caveolae regulate the Hippo pathway is incomplete, a few plausible mechanisms exist. In myoblasts stretch-induced caveolae disassembly leads to SRC activation [106], but whether this SRC activation mediates YAP activation via LATS inhibition, or by directly activating phosphorylation of YAP directly (Box 1) is still to be explored. The plasmalemmal anionic lipid, phosphatidylserine (PS), is an important mediator of cellular signaling. PS is required for caveolae formation [116]. Multiple caveolae components bind to PS and especially the cytosolic recruitment of the
integral caveolar proteins, the cavins, to the plasma membrane proteins appear to depend on the increased avidity upon PS clustering \[2,115\]. CAV1 deficiency results in altered cellular lipid composition, and plasma membrane PS distribution \[117\]. PS in recycling endosomes activates YAP \[118\]. The redistributed PS in CAV1-deficient cells might contribute to the altered YAP activity in CAV1-deficient cells.

Hypo-osmotic stress flattens caveolae (Box 3) and also regulates the Hippo pathway. Osmotic stress stimulates transient YAP nuclear localization by Nemo-like kinase (NLK)-mediated Ser128 phosphorylation of YAP. YAP phosphorylation on Ser127 and Ser128 appears mutually exclusive \[119,120\]. This antagonizes and disrupts the inhibitory complex formation between YAP and 14-3-3, and increases YAP activity even when YAP is phosphorylated at the LATS1/2-mediated Ser127 \[119,120\]. However, how and if caveolae and the Hippo pathway are interlinked in the cellular response to osmotic stress is currently not established.

In addition, mechanoprotective properties of caveolae also take place in hemidesmosomes (HDs). HDs are epithelial-specific plasma membrane complexes anchoring the cell’s keratin network to the ECM and protecting the cell from mechanical stress \[121\]. The HD-specific α6β4 integrin \[121\] is cotransported with CAV1 during remodeling processes \[122\]. Upon cell stretching and hypo-osmotic shock, α6β4 is released from HDs. The subsequent trafficking of HD integrins is (indirectly) dependent on caveolae \[122\], indicating that caveolae are required for HD generation and turnover. Moreover, α6β4 activates YAP via laminin 322 \[123\], which additionally might link caveolae and the Hippo pathway.

Caveolae modulate ECM homeostasis and composition. In mammary glands CAV1 knockout causes increased expression of ECM components, such as fibronectin, tenascin C, and collagens, which increase ECM stiffness \[124\]. Cavin1 deficiency in adipocytes likewise increases expression of fibronectin and collagens \[125\]. Furthermore, CRISPR genome edited CAV1-deficient NIH3T3 cells (mouse
fibroblasts) produce, due to increased gene expression, elevated levels of ECM components, such as elastins and collagens (Figure 3) [126]. Increased levels of ECM due to decreased caveolae abundance might underlie the lung fibrosis observed in CAV1-deficient animals and in clinical manifestations such as idiopathic pulmonary fibrosis [127,128]. Codependency of protein stability between CAV1 and CAVIN1 might therefore also explain the increase in collagen and fibronectin expression in CAV1- and CAVIN1-deficient cell lines and animal models [97,98,108,124–126]. Caveolae-dependent \(\beta_1 \) integrin endocytosis is furthermore a mediator of fibronectin matrix turnover. CAV1-deficient cells have decreased levels of \(\beta_1 \) integrin and fibronectin internalization and increased plasma membrane \(\beta_1 \) integrin [129]. \(\beta_1 \) integrin is an inhibitor of LATS1/2 and consequently activates YAP, but \(\beta_1 \) integrin also appears to activate YAP independently of LATS [36,130]. The ECM composition dictates Hippo pathway activity and increased ECM rigidity activates YAP/TAZ [11]. It is therefore plausible that the increased activation of YAP/TAZ in some CAV1 knockout cells might be caused by increased synthesis of ECM. However, in mouse embryonic fibroblasts, CAV1 activates YAP in response to substrate stiffness in an actin-cytoskeleton-dependent manner, which might be an alternate and context dependent way for the cell to adapt to changes in ECM stiffness [110].

Mechanical cues as well as YAP/TAZ activity regulate senescence [131]. YAP/TAZ bypass senescence induced by mechanical cues by altering nucleotide metabolism [131]. Regulation of senescence is furthermore regulated by CAV1 and K-Ras. CAV1 deficiency reduces oncogenic K-Ras-induced premature senescence. K-Ras also induces the inhibitory interaction of CAV1 with the central detoxifier MTH1 limiting senescence [132]. Furthermore, in pancreatic cancer, K-Ras regulates YAP activity and YAP is a well-characterized negative regulator of senescence [133,134]. Consequently, caveolae might also be linked to YAP activity via K-Ras and regulation of senescence; however, a potential causative interaction is still missing.

In conclusion, both caveolae and the Hippo pathway are key regulators of central cellular processes [5,12,110,111]. The direct regulation of essential caveolar genes by the Hippo pathway [111] highlights the importance of this robust cellular feedback [110,111].

The Hippo Pathway, YAP/TAZ, and Primary Cilia

Primary cilia are nonmotile plasma membrane evaginations and play central cellular roles in sensing both mechanical (cilium bending) and chemical stimuli [7,135].

YAP/TAZ and the primary cilia are reciprocal negative regulators. Cytoplasmic retention or YAP/TAZ deficiency correlates with cell rounding, smaller cell size, and increased cilia formation [33,67,136–139]. The kinases LIMK2 and TESK1 are actin-remodeling factors that suppress ciliogenesis by inhibiting ciliary vesicle trafficking at least partly via YAP/TAZ activation (Figure 4A) [139]. MST1 is activated during ciliogenesis and localizes to the basal body of cilia, where MST1/2 facilitate development of mature primary cilia by promoting localization of multiple ciliary cargoes (e.g., RAB8A, Smo, and RPGR) [140]. Aurora kinase (AURKA) localizes to the basal body of the cilium and induces ciliary resorption in response to growth factor stimulation [141]. MST1/2 mediate direct phosphorylation of AURKA, which interferes with formation of the AURKA/HDAC6 cilia-disassembly complex. MST1/2 thereby inhibit primary cilia disassembly [140] (Figure 4B). Similarly, expression of the primary cilia disassembly factors AURKA and PLK1 are increased upon YAP activation (Figure 4C) [140]. Complementary experiments using cytochalasin D, an actin destabilizer that causes cytoplasmic YAP/TAZ, also induces ciliogenesis and elongated cilia (Figure 4D) [139]. The cilia-associated proteins nephrocystin (NPHP)4 and NPHP9 inhibit the Hippo kinase cascade [137,138]. NPHP4 binds to and inhibits LATS1, whereby NPHP4 facilitates YAP/TAZ-mediated cell proliferation (Figure 4E) [137]. Inhibition of YAP/TAZ expression and their cytoplasmic retention have been linked to cilia disassembly, indicating the prominent role of YAP/TAZ activity in suppressing ciliogenesis.

Primary cilia are cellular sensory modalities, and links between the Hippo pathway and this cellular antenna need further exploration. YAP/TAZ drive the expression of a range of prominent signaling...
Figure 4. Hippo Pathway and Primary Cilia.

Primary cilia are microtubule-based organelles that coordinate signal transduction. Several components involved in cilia formation and cilia disassembly also regulate YAP/TAZ activity. (A) The kinases LIMK2 and TESK1 inhibit ciliogenesis (at least partly) via YAP/TAZ activation. (B) MST1/2 facilitate development and stability of mature primary cilia by inhibition of YAP/TAZ activity and inhibitory phosphorylation of Aurora kinase A (AURKA). (C) YAP activation increases the expression of the primary cilia disassembly factors AURKA and PLK1. (D) The actin destabilizer cytochalasin D (CytoD) causes YAP/TAZ inactivation and induces ciliogenesis and elongated cilia. (E) The cilia-associated protein nephrocystin-4 (NPHP4) binds to LATS1 and inhibits LATS-mediated phosphorylation of YAP/TAZ. Consequently, YAP/TAZ is activated.

Concluding Remarks

The plasma membrane is a dynamic chemical and mechanical transducer. Adaptable sensing of extracellular signals is essential in order to ensure context-specific cell homeostasis and regulate differentiation. Tight and adherens junctions are established major intercellular regulators of the Hippo pathway [10,15,16]. In addition desmosomes [148], specialized adhesive protein complexes that also localize to intercellular junctions, likewise regulate YAP/TAZ [149,150]. Dysregulation of desmosomes causes context-dependent YAP regulation [149,150], and multiple desmosome components are likely YAP/TAZ–TEAD target genes, as informed by their presence in large scale chromatin immunoprecipitation (ChIP)-seq analysis of Tead4 target genes [151], providing further cellular feedback.
Additional, highly specific plasma membrane elements, such as FAs, CCPs and plaques, caveolae, and primary cilia are key to enable a defined localized response to a large variety of signals [3–7]. Those plasma membrane structures dynamically sense and transmit chemical and mechanical stimuli to the Hippo pathway (Figure 5, Key Figure) [2–8,11]. Most cell types, in particular endothelial cells, myocytes, and bone cells, constantly experience mechanical forces through shear stress and tension [6,9,11,152]. The Hippo pathway is a nexus and integrator of cellular responses to tension, stretching, and changes of ECM properties [11,33] and contains multiple levels of robust cellular feedback loops, which ensures cellular homeostasis [37,111,153]. YAP/TAZ–TEAD also directly regulate the expression of central components of additional cell signaling pathways, such as Wnt, TGF, Notch, and BMP [10], and several of these have direct roles in for instance the primary cilia [7,135,142]. Importantly, the central plasma membrane components discussed here also interact with each other in order to respond to complex stimuli. This widespread spatiotemporal interplay between prominent members of apparent distinct plasma membrane domains highlight the intricate complexity of the plasma membrane, and therefore, also ultimately their dynamic interactions with the Hippo pathway. Furthermore, due to the wide range of transcriptionally regulated YAP/TAZ target genes, and consequently, the central role of YAP/TAZ in most cellular processes, it remains challenging to study the effect of potential additional roles of upstream Hippo pathway kinases and scaffolding proteins in regulating these cellular plasma membrane domains separately and independently of YAP/TAZ.

Key Figure

Hippo Pathway and Plasma Membrane Interactions

![Image of the key figure](https://doi.org/10.1016/j.tcb.2019.10.005)

Figure 5. Focal adhesions (FAs), clathrin-coated pits (CCPs) and plaques (CCSs), as well as caveolae and primary cilia have strong reciprocal interactions with the Hippo pathway, resulting in a context dependent activation or inhibition of YAP/TAZ activity directed from the plasma membrane. The weight and direction of the arrows indicate the collective reported scale of the effects. Also depicted are cellular junctions (tight junctions, adherens junctions, and desmosomes) as additional established regulators of the Hippo pathway. Abbreviations: add., additional; ass., associated.

Outstanding Questions

- **How are the cellular Hippo pathway components spatiotemporally regulated?**
 - Subcellular localization drives compartmentalization and protein function. Specific Hippo pathway components temporally localize to junctional complexes. However, precise and dynamic information on the subcellular localization of Hippo pathway components in general, especially in vertebrates, is currently not well established. It is anticipated that Hippo pathway components might also be subcellularly distributed to additional plasma membrane domains. Genome editing, live cell imaging, and super-resolution microscopy at endogenous levels appear to be fertile avenues to explore. Caution must be taken to ensure that genome-tagged versions of the Hippo pathway components conserve their cellular dynamics and functionality. Recently developed proximity-dependent chemical biology approaches, such as APEX, BioID, as well as biorthogonal noncanonical amino acid tagging (BONCAT) might prompt further insights into the interplay between these signaling modalities.

- **Does the Hippo pathway alter the plasma membrane glycocalyx and lipid composition?**
 - Determining the impact that YAP/TAZ activity has on the cellular glycocalyx and plasma membrane lipid composition could reveal fundamental new insights.

- **How widespread is Hippo pathway ‘moonlighting’?**
 - It is becoming clear that Hippo pathway core kinase components integrate additional seemingly independent substrates into context-specific signaling. The field might need to brace itself for surprising discoveries, where Hippo pathway components moonlight in distinct functions away from direct regulation of the core Hippo pathway. However, it remains
regulation. It should be acknowledged that obtaining mechanistic insights to decipher the importance of one type of regulation and to distinguish that from other inputs is conceptually challenging.

The chemical and mechanical clues cells respond to are diverse. Interconnecting plasma membrane structures play central roles in sensing and relaying extracellular signals to the Hippo pathway. This compartmentalization allows for a dynamic and context-specific response. However, our current understanding of how this delicate and dynamic interplay is regulated is far from complete (see Outstanding Questions). Future discoveries will provide mechanistic insights into cellular processes relevant in development, regenerative medicine, and disease.

Acknowledgments

Work ongoing in the Gram Hansen laboratory is supported by a University of Edinburgh Chancellor’s Fellowship, the Wellcome Trust–University of Edinburgh Institutional Strategic Support Fund (ISSF3), and the Worldwide Cancer Research (WCR). Figures were rendered in BioRender.

References

20. Liu, X. et al. (2013) PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266–1273
133. Xie, Q.
132. Volonte, D.
131. Santinon, G.
130. Sabra, H.

125. Ding, S.Y.
124. Thompson, C.
123. De Rosa, L.
122. YAP1 to promote cancer cell motility. J. Cell Biol. 204, 777–792

113. Lee, H.J.
112. Mendoza-Topaz, C.
111. Hirota, N.
110. Matsudaira, T.
109. Wang, X.M.

96. Chen, S.N. et al. (2014) The hippo pathway is activated and is a causal mechanism for adipogenesis in arthrogryphic cordomyopathy. Circ. Res. 114, 454–468

89. Stegert, M.R. et al. (2005) Regulation of NDR protein kinase by hydrophobic motif phosphorylation
164. Si, Y. et al. (2017) Src inhibits the Hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1. Cancer Res. 77, 4868–4880