Metaphyseal cones in revision total knee arthroplasty: the role of stems

Citation for published version:

Digital Object Identifier (DOI):
10.1302/2046-3758.94.BJR-2019-0239.R1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Bone & Joint Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Metaphyseal cones in revision total knee arthroplasty: the role of stems

Shuqiao Xie¹, Noel Conlisk¹, David Hamilton², Chloe Scott³, Richard Burnett³ and Pankaj Pankaj¹*

¹School of Engineering, Institute for Bioengineering, The University of Edinburgh, Alrick Building, The King’s Buildings, Edinburgh EH9 3BF, UK

²Department of Orthopaedics and Trauma, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK

³Department of Orthopaedics, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SB, UK

* Corresponding author

Professor Pankaj Pankaj
pankaj@ed.ac.uk
Tel: +44 131 650 5800
Metaphyseal cones in revision total knee arthroplasty: the role of stems

Abstract

Objectives:

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems to the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods:

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50mm stem, 100mm stem) were investigated with 10mm deep uncontained posterior and medial tibial defects using 4 loading scenarios designed to mimic activities of daily living (knee bend, standing up, walking, stair descent).

Results:

Small micromotions (mean 5.6-12µm) were found to occur at the bone-implant interface for all loading cases with or without a stem. Stem inclusion was associated with lower micromotion, however, these reductions were too small to have any clinical significance. Peak interface micromotion even when the cone is used without a stem was too small to effect osteointegration. The maximum difference occurred with stair descent loading where
long stem compared to no stem reduced the implant percentage experiencing 25-40 µm micromotion from 14 to 4%. Stress concentrations in the bone occurred around the inferior aspect of each implant with the largest occurring at the end of the long stem; these may lead to end of stem pain. Stem use is also found to result in stress shielding in the bone along the stem.

Conclusions:

When a metaphyseal cone is used at rTKA to manage uncontained posterior or medial defects of up to 10mm depth stem use is not necessary.

Keywords:

Bone defects; finite element analysis; interfacial micromotion; end of stem pain; von Mises stress
Article summary:

Article focus:

- Investigate the role of the stem if cones are used at rTKA for two commonly observed bone defects with the joint subjected to four loading scenarios

Key messages:

- Stem inclusion was associated with lower micromotions, but their magnitude was too small to have any clinical significance
- Stems caused stress concentration at the tip of the stem and stress shielding in the bone along the stem
- The stem is not necessary when a metaphyseal cone is used at rTKA to manage uncontained posterior or medial defects of up to 10mm depth

Strengths and limitations:

- This is the first study that considers the role of the stem if the metaphyseal cone is used at rTKA
- Time-dependent response of bone is not considered in this study
Introduction

Bone loss is often encountered at revision total knee arthroplasty (rTKA) and managing large bone deficiencies remains a challenging problem. There is little agreement on the optimal management of bone loss; bone grafts, metal or tantalum augments, metaphyseal sleeves and porous cones have all been advocated. These techniques are generally used in combination with stems which can be short or long and cemented or press-fit.

Biomechanically, tibial stems assist tibial components by sharing loads and reducing tibial implant lift-off and micromotion at the bone-implant interface. Stem use can also assist implant alignment. The potential disadvantages of stems include stress-shielding, periprosthetic fracture risk and end-of-stem pain.

Metaphyseal porous cones and sleeves have been designed to replace bone loss at rTKA. In principle, metaphyseal cones and stems have a similar function: to increase the contact area between the tibial bone and the implant thus offloading the complex combination of loads and moments experienced at the interface. The large surface area optimises stresses at the bone-implant interface and the large friction coefficient at the porous coating and bone interface reduces micromotion. A number of clinical and experimental studies have demonstrated metaphyseal cones to be a viable management solution for bone loss encountered during rTKA.

Where clinical studies have examined cones or sleeves in rTKA, a stem has generally been included as part of the construct. However, end-of-stem pain has been reported by a number of clinical studies. It has been suggested that sleeves or cones could potentially be used without a stem, thereby avoiding both end-of-stem pain and stress shielding. This has been investigated experimentally in a cadaveric tibial model where similar biomechanical conditions in terms of implant stability and surface strain distribution were found when a
cone was used with or without a stem for a single defect type. This computational study considered two different defect locations, four loading scenarios and cones without stems and with two different stem lengths. It also examined stresses around the implants to evaluate the extent of stress shielding caused their presence – this cannot be measured in lab experiments.

This computational study aims to investigate the biomechanical performance of metaphyseal cones used for rTKA with and without stems. Specifically, interface micromotion and cancellous bone stress were examined for two bone loss scenarios (medial and posterior defects) managed using metaphyseal cones both with stems (short and long) and without a stem. Our hypothesis was that the primary stability of the tibial implants is ensured if metaphyseal cones are used for rTKA even without a stem.

Methods

Geometry

A three-dimensional computer-aided design (CAD) model of the tibia was obtained from a previous study. Resection of the tibia model was performed for rTKA; the sectioning plane was a surface perpendicular to the mechanical axis of the tibia, located 8mm below the medial articular surface.

The tibial baseplate was aligned with the central axis of the diaphyseal canal and the baseplate sizing was based on rotation oriented to the medial third of the tubercle and tibial plateau obtaining less than 1mm of overhang. Universal Tibial Baseplate #3 (5521-B-300) was chosen in this study and Triathlon Tritanium Symmetric Cone Augment (Stryker Orthopaedics, Marwah, NJ, USA) Size A (5549-A-110) was considered as per the recommended surgical technique. Three implant constructs were modelled: no stem; short cemented stem (50mm length, 9mm diameter); and long cemented stem (100mm length,
9mm diameter) (Fig. 1a). To avoid any direct contact between the baseplate and the cone, a 2mm thick cement layer was included. Cement was also filled in the medullary cavity up from 175mm depth measured from the sectioning plane to the bottom of the cone.

Uncontained bone defects involving the medial and posterior tibia were considered. Each defect was 10mm deep and commenced 9mm away from the centre of the cone in a posterior or medial direction (Fig 1c and 1d). This resulted in six models for study with two bone defects (posterior and medial) examined for each of the three bone-implant constructs (cone without stem, cone with a short stem and cone with a long stem).

Material definition

The materials were assumed to be homogeneous, isotropic and linear elastic (Table 1). Poisson’s ratio of 0.3 was assumed for all materials.

Fully-bonded interfaces were assumed where the bone or the implant was in contact with cement (i.e. baseplate and cement, cement and cone and cement and bone); frictional contact was assumed at bone-implant interfaces. A standard Coulomb friction coefficient of 0.35\(^{16-19}\) was employed for baseplate- bone and tritanium cone - bone interfaces, while a coefficient of 1.01\(^{20}\) was assumed for the tritanium cone coating - bone interface (Fig. 2b).

Loading and boundary condition

The force components \(+F_x\), \(+F_y\) and \(+F_z\) act in lateral, anterior and inferior directions and positive moment components were defined accordingly, as shown in Fig. 1. The forces and moments were applied to a reference point which was at the centre of the baseplate and was constrained to the top surface of the baseplate using multi-point constraints. Standard average loads for the knee joint in subjects with 75 kg body weight were chosen from OrthoLoad.\(^{21}\) Four loading scenarios were selected for the current study: knee bend (squatting), standing
up, walking and descending stairs (denoted as KB, SU, WA and StaD respectively), which cover the majority of the loading conditions encountered during activities of daily living. The time-points with the largest superior-inferior forces \((F_z)\) were chosen for WA and KB and the time-points having the largest \(M_x\) were considered for StaD and KB. Forces and moments for all loading scenarios are illustrated in Fig. 2. Similar to previous studies, the tibia was truncated and fixed in all degrees of freedom at a distance of 200mm (measured from the sectioning plane Fig. 1c).

Output variables

To evaluate micromotions, corresponding nodes between implants (tibial baseplate and two parts of the cone) and neighbouring bone were paired to produce implant-bone node-pairs by using a customised MATLAB code (MathWorks, US). The micromotions were then evaluated as the displacement at node-pairs due to load application. Five sections along bone were selected to compare the differences in von Mises stresses in the bone for three different combinations of tibial components: cone alone, cone with short stem and cone with long stem. Sections 1 and 2 are located around the cone mid-height and just below the cone respectively. Sections 3 and 4 are located at the tip (distal end) of short and long stems, respectively. The choice of these sections is to determine the stresses around and at the bottom of each of the implant combinations. Section 5 is 50mm away distally from the end of the long stem; all stresses at this section will be carried by the bone and is expected to be similar for all implant combinations.

Results

Micromotions:
The typical micromotion patterns at the bone-implant interface for all four loading scenarios including the mean and 95 percentile micromotions for each model are shown in Fig. 3. In general, it was found that micromotions at the interface were sensitive to the loading scenarios. Walking (WA) and stairs descending (StaD) resulted in higher micromotion compared to knee bend (KB) and standing up (SU). The mean micromotions are generally ≤ 12.0μm for all the models considered in this study (Fig. 3). Micromotions at the interface were grouped in ranges: <15μm, 15-25μm (medium) and 25-40μm (high). The percentage of surface areas within these ranges relative to total areas of the bone-implant interface were calculated and are shown in Fig. 4 (micromotions <15μm were excluded).

It was found that micromotions are small for KB and SU (Fig. 3): >90% of the area had micromotions <15μm and they were ≤25μm everywhere (Fig. 4a and 4b). A higher range of micromotions was found under WA and StaD loadings scenarios and higher micromotions were observed for bone with an uncontained medial defect compared to an uncontained posterior defect (Fig. 3). The addition of a stem and increasing the length of the stem decreased both medium and high ranges of micromotions (Fig. 4). The mean and 95 percentile micromotions were decreased with the addition of a stem and decreased further with increased stem length (Fig. 3). However, this decrease in micromotion was small. For example, in the medial defect scenario with the StaD loading, the mean micromotion reduced from 12.0 (no stem) to 11.6 (short stem) and to 11.2 (long stem) μm (Fig. 3). The reductions in average micromotions for bone with a medial defect were only 3.3% and 6.7% for short and long stems respectively.

Bone stresses:

The von Mises stresses in the tibial bone along the implant (with and without stems) were evaluated at 5 representative sections for all the loading scenarios considered in this study.
(Figs. 5 and 6). Four points at anterior, lateral, medial and posterior locations (A, L, M and P), were selected from each section and the stresses were plotted. It is clear that the variation of stresses at each section is sensitive to the loading scenario (Figs 5 and 6). The percentage differences in von Mises stresses between no stem and short and long stem scenarios under StaD loading are given in Table 2. We examined the bone stresses at different sections:

Section 1: Located just below the middle of the cone

When the cone was used without a stem, slightly higher stresses were observed for all loading scenarios, with the exception of the anterior region. Including a stem caused the applied forces and moments to bypass the cone and thus slightly smaller stresses were found, which were further reduced by the increase in stem length. The highest reduction of stresses with a short stem was 11% (for posterior defect) and 26% (for medial defect) in the StaD loading scenario; with the long stem these reductions were 19% and 28% (Table 2).

Section 2: Bottom of the cone

The stresses reduced by inclusion of a short stem and reduced further for the long stem. The largest reduction of stress was 24% and 70% for posterior and medial defect scenarios, respectively (Table 2). The highest reduction of stresses was observed in the anterior and lateral regions of the bone for posterior (Fig. 5) and medial (Fig. 6) defect scenarios, respectively, and this is true for all the loading scenarios.

Section 3: End of the short stem

Compared to the no stem construct, significantly higher stresses were found at all anatomic locations when a short stem was incorporated for both bone defects considered (Fig. 5 & 6). The stress increment was more than 70% with the short stem compared to cone being used alone (Table 2).
However, long stem use reduced the peri-bone stresses considerably, and these were more than 60% in the anterior region of the bone for both bone defects considered (Table 2). Essentially this means that a considerable amount of load, or stress, bypassed the cone and was carried by the stem.

Section 4: End of the long stem

Similarly, for the long stem construct, higher stresses were found at all four locations compared to the short stem and no stem cases, again coincident with the stem tip (Fig. 5 and 6). The elevated stresses found at the end of the long stem were more than 3 times the stresses observed for a cone used alone (Table 2). At this section almost no difference in stresses was found when a cone was used without a stem or with a short stem (Table 2).

Section 5: 50mm away from the end of the long stem

von Mises stresses were similar for all the implant constructs (i.e. cone with or without stem) with differences of less than 1% (Table 2) for both posterior (Fig. 5) and medial (Fig. 6) defects. This was true for all the loading scenarios considered.

Discussion

Metaphyseal cones are designed to replace large bone defects at rTKA and have been shown to have comparable or superior fixation compared to existing systems in clinical9–11 and experimental5,7 studies. A stem is generally considered as additional fixation and is typically used to augment cones. The present study demonstrates that when cones are used to manage uncontained posterior or medial defects in the tibia, compromised primary stability leads to some micromotion at the implant-bone interface and that this occurs with or without a stem. Micromotions at the interface are found to decrease by the inclusion of a stem and decrease further with increasing stem length, however, micromotions are small in all cases with or
without stems. Inclusion of a stem, reduces the stresses in the bone around it and at the bottom of the cone. Stress concentrations occur at the tip of both short and long stems and much larger stress concentrations are found in the tibial bone at the tip of the long stem.

Interfacial micromotion is an important indicator in the evaluation of the mechanical stability of bone-implant constructs. The bone-implant construct experiences large moments during walking and stairs descending (Fig. 2), therefore, these loading scenarios resulted in higher micromotions compared to knee bend and standing up cases. A previous computational investigation for a primary TKA showed that the average micro-movements between cement and bone were reduced by 19% and 23% for press-fit and cemented stems respectively.1 An experimental study also reported that if the stem is used in combination with a metaphyseal sleeve for rTKA, the micromotion will reduce.23 The reduction of micromotion at the sleeve region has also been previously reported computationally, however, this reduction was small, around 10% with a stem length of 60mm.24 In the current study, we found that stem inclusion was associated with lower micromotion. However, the reduction is only 3.3% and 6.7% for short and long stems, respectively, used in conjunction with cones for medial bone defect considered and subjected to descending stairs loading (worst case scenario). This reduction in micromotion is too small for overall tibial construct stability and of doubtful clinical significance. Moreover, micromotions found in this study, for both tibial defects considered, were small in all cases. Previous research has shown that bone ingrowth is achieved if interface micromotions are \textless 50 \mu m.25,26 The micromotions observed in the current study are far below 50\mu m for both considered defects using cones with or without stems. Therefore, successful cone osseointegration would be expected even where cones are used without stems for rTKA.27
Inclusion of a stem in TKA, primary or revision, may improve mechanical stability but comes at the cost of stress shielding along the length of the stem and has been discussed in a number of studies and reviews. \(^3\)\(^,\)\(^4\)\(^,\)\(^9\) Computational\(^{24}\) and experimental\(^{28}\) studies have reported that the inclusion of stem results in a decrease in proximal tibial strain. The reduction of the strain within the bone (or strain shielding) was observed in a computational study when a stem was used in combination with metaphyseal sleeve for rTKA.\(^{24}\) A previous experimental study found that tantalum cones produced very similar biomechanical conditions for rTKA with or without a stem by examining the strain distribution at the outer surface of the tibia.\(^5\)

However, the strain or stress distribution in the bone at the interface is a better indicator of stability and stress shielding in the bone-implant system. In this computational study, we considered the stress distributions in the bone at the interface. We found that stem inclusion reduced the stresses at the inferior aspect of the cone by up to 29% and 60% for posterior and medial defects respectively. Including a stem and thus offloading the proximal bone defect, therefore, protecting the supported bone may appear desirable. However, the stress shielding at the base of the cone (section 2) and in the bone along the stem is not desirable and may result in bone resorption. Some clinical studies have reported metaphyseal bone resorption after knee reconstructions when a stem is included, suggesting stress shielding.\(^{29,\)\(^30\) Consistent with a previous clinical study,\(^31\) we also observed that the longer the stem, the more proximal bone stress shielding.

The stresses generated within the tibial bone due to bending moments are largely carried by the stem, therefore, the stresses in the bone are reduced at the proximal but elevated at the tip of the stems. The stress concentration at the tip of the stem has been previously reported in experimental and computational studies. An experimental study observed the strain concentration at the stem tip for both cemented and press-fit stem for primary TKA.\(^{28}\) A computational study reported that the concentrated stress at the tip of the stem up to 4 and 7
times of the stresses of the intact tibia for stem length of 50mm and 100mm respectively.32 We too observed stress concentration at the tip of the stem, and the longer the stem the larger the tip stresses. The stresses observed at the tip of the stem here increased up to 77\% and 317\% for short and long stems, respectively compared to cone used alone for rTKA. Stress concentration at the stem tip can be associated with end of stem pain and potentially put peri-prosthetic bone at risk of fracture.4 End-of-stem pain is a recognised clinical issue and has been reported by a number of clinical studies.14,29 Our study shows that inclusion of stems with cones for rTKA does not offer any benefits.

There are a number of limitations of this study. Material nonlinearity was not considered and might influence the strain/strain distributions in the bone.33–35 Bone properties vary with age and disease and this is not included in the current study. Bone is considered as an isotropic homogeneous material. This assumption simplifies modelling and has been commonly used in almost all previous studies.e.g. 15,36,37 This assumption is unlikely to alter the interfacial micromotions and stress trends observed. Bone is known to be a time-dependent material,38–40 and this time-dependent response accentuates implant loosening when cyclic loading is applied,41 and the interfacial micromotions are also related to loading frequencies.42 The biomechanical performances of the bone-implant construct used for rTKA with increased gait cycles need further investigation by the inclusion of the time-dependent response of bone.

This study investigated the role of stems in conjunction with tritanium cones in the management of posterior and medial defects at revision total knee arthroplasty. It was found that though stem used in combination with the cone did reduce micromotion at the bone-implant interface, however, these reductions in micromotion were too small to have clinical significance. Peak interface micromotion was small and would not be expected to affect osteointegration even when the cone is used alone without a stem. Although bone stresses
near the defect were reduced by stem inclusion, which may help protect defected bone, undesirable stress-shielding occurs at the base of the cone and in the bone surrounding the stem. Moreover, stress concentrations are observed at the end of the stem, resulting in stresses that are up to three-times those without a stem; these may be associated with end-of-stem pain and peri-prosthetic fracture. Though stemmed tibial components assist in restoring implant alignment, a stemless construct is more bone preserving. Therefore, for the scenarios examined, this computational study shows that when a metaphyseal cone is used for revision total knee arthroplasty, biomechanically the stems may not be necessary. Before stems are abandoned all together, further clinical assessment may help confirm findings of this computational study.

Acknowledgement

This work was supported by the EPSRC [Grant EP/K036939/1] and Stryker.
References

43. Stryker. Engineered for bone [Internet]. 2017. Available from: https://www.stryker.com/builttofuse/media/assets/3434TriC_TechSummaryTRICC-
Table 1 Material properties used

<table>
<thead>
<tr>
<th>Parts</th>
<th>Young’s modulus E(MPa)</th>
<th>Poisson’s ratio ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone 33</td>
<td>15,250</td>
<td></td>
</tr>
<tr>
<td>Trabecular bone</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>Tibial baseplate</td>
<td>210,000</td>
<td></td>
</tr>
<tr>
<td>Bone cement 1</td>
<td>2,280</td>
<td>0.3</td>
</tr>
<tr>
<td>Stem</td>
<td>117,000</td>
<td></td>
</tr>
<tr>
<td>Titanium cone 43</td>
<td>117,000</td>
<td></td>
</tr>
<tr>
<td>Tritanium cone coating 43</td>
<td>6,200</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 von Mises stresses of bone at five representative sections for the three implant constructs under the loading scenario stair descent. For comparison, the stresses displayed when a short or long stem was added are represented as percentage differences compared to no stem.

<table>
<thead>
<tr>
<th>Anatomic location</th>
<th>Posterior defect</th>
<th>Medial defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cone</td>
<td>No Stem (Mpa)</td>
<td>Short Stem</td>
</tr>
<tr>
<td>Section 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.34</td>
<td>-1%</td>
</tr>
<tr>
<td>M</td>
<td>1.82</td>
<td>-11%</td>
</tr>
<tr>
<td>P</td>
<td>1.70</td>
<td>-11%</td>
</tr>
<tr>
<td>L</td>
<td>0.73</td>
<td>-10%</td>
</tr>
<tr>
<td>Section 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.86</td>
<td>-29%</td>
</tr>
<tr>
<td>M</td>
<td>0.93</td>
<td>15%</td>
</tr>
<tr>
<td>P</td>
<td>1.36</td>
<td>-22%</td>
</tr>
<tr>
<td>L</td>
<td>0.64</td>
<td>-16%</td>
</tr>
<tr>
<td>Section 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.23</td>
<td>46%</td>
</tr>
<tr>
<td>M</td>
<td>0.57</td>
<td>43%</td>
</tr>
<tr>
<td>P</td>
<td>0.57</td>
<td>52%</td>
</tr>
<tr>
<td>L</td>
<td>0.29</td>
<td>70%</td>
</tr>
<tr>
<td>Section 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.28</td>
<td>-3%</td>
</tr>
<tr>
<td>M</td>
<td>0.49</td>
<td>1%</td>
</tr>
<tr>
<td>P</td>
<td>0.68</td>
<td>1%</td>
</tr>
<tr>
<td>L</td>
<td>0.28</td>
<td>0%</td>
</tr>
<tr>
<td>Section 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.18</td>
<td>-1%</td>
</tr>
<tr>
<td>M</td>
<td>0.63</td>
<td>-1%</td>
</tr>
<tr>
<td>P</td>
<td>0.99</td>
<td>0%</td>
</tr>
<tr>
<td>L</td>
<td>0.44</td>
<td>1%</td>
</tr>
</tbody>
</table>

Note: Negative and positive differences simply imply that the stresses observed in the bone are smaller or larger, respectively, than those found for the cone used without a stem.
Figure 1: Illustration of two stems considered: short or long stems (a); the setup of metaphyseal tritanium cone together with illustration of contact properties (b); uncontained posterior (c) and medial (d) defects. The positive axes point to lateral, anterior and inferior directions for Fx, Fy and Fz respectively, and for positive moments are defined accordingly.
Figure 2: Loadings applied. Six degrees of freedom were considered for load application, three forces and three moments. Four loading scenarios were considered: knee bend or squatting (KB) standing up (SU), walking (WA) and descending stairs (StaD)
Figure 3: Superior view of micromotion contours at the bone-implant interface for all loading scenarios for the two bone defects considered. The mean and 95 percentile of micromotions for each model are also shown.
Figure 4: Comparison of the predicted micromotions occurring at the bone-implant interface by range for: knee bend (a); standing up (b); walking (c); descending stairs (d);
Figure 5: von Mises stress of posterior defected bone from four anatomic points (anterior: A, lateral: L, medial: M and posterior: P) when the cone was used for revision total knee arthroplasty without stem, with a short stem or a long stem. Four loading scenarios were considered: knee bend (KB), standing up (SU), walking (WA) and stairs descending (StaD).
Figure 6: von Mises stress of medial defected bone from four anatomic points (anterior: A, lateral: L, medial: M and posterior: P) when the cone was used for revision total knee arthroplasty without stem, with a short stem or a long stem. Four loading scenarios were considered: knee bend (KB), standing up (SU), walking (WA) and stairs descending (StaD).