Direct simulation for wind synthesis

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
11th International Conference on Digital Audio Effects

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
DIRECT SIMULATION FOR WIND INSTRUMENT SYNTHESIS

Stefan Bilbao*
Music/Acoustics and Fluid Dynamics Group,
University of Edinburgh
Edinburgh, UK
sbilbao@staffmail.ed.ac.uk

ABSTRACT

There are now a number of methods available for generating synthetic sound based on physical models of wind instruments, including digital waveguides, wave digital filters, impedance-based methods and those involving impulse responses. Normally such methods are used to simulate the behaviour of the resonator, and the coupling to the excitation mechanism is carried out by making use of simple lumped finite difference schemes or digital filter structures. In almost all cases, a traveling wave, frequency-domain, or impulse response description of the resonator is used as a starting point—efficient structures may be arrived at when the bore is of a particularly simple form, such as a cylinder or cone.

In recent years, however, due to the great computing power available, efficiency has become less of a concern—this is especially the case for musical instruments which may be well-modelled in 1D, such as wind instruments. In this paper, a fully time-space discrete algorithm for the simulation and synthesis of woodwind instrument sounds is presented; such a method, though somewhat more computationally intensive than an efficient waveguide structure, is still well within the realm of real-time performance. The main benefits of such a method are its generality (it is no longer necessary to make any assumptions about bore profile, which may be handled in an almost trivial manner), extensibility (i.e., the model may be generalized to handle nonlinear phenomena directly), ease of programming, and the possibility of direct proofs of numerical stability without invoking frequency domain concepts.

Simulation results, sound examples and a graphical user interface, in the Matlab programming language are also presented.

1. INTRODUCTION

The synthesis of sound based on physical models of wind instruments has traditionally been carried out in a variety of ways. Digital waveguides [1,2] have been extensively explored, especially in the special cases of cylindrical and conical tubes, in which case they yield an extreme efficiency advantage. A related scattering method, wave digital filtering [3], is also used in order to connect waveguide tube models with lumped elements such as an excitation mechanism [4] or toneholes [5]. Another body of techniques, closely related to digital waveguides, and based around impedance descriptions, has been developed by Guillemin and his associates [6]. Other techniques, based on the so-called "K"-method (in opposition to wave- and scattering-based methods) bear a closer resemblance to the direct simulation methods to be discussed here.

Most of these methods owe a great deal to the much earlier treatment of self-sustained musical oscillators due to McIntyre, Schumacher and Woodhouse [8].

All of these methods rely, to some degree, on simplified descriptions of the resonator (tube)—for example, digital waveguides make use of a traveling wave decomposition, accompanied by frequency-domain (impedance or reflectance) characterizations of lumped elements or phenomena such as bell radiation and tone holes. Other methods make use of impedance descriptions of the resonator itself [6], or, its time-domain counterpart, the Green’s function [8]. Such points of view follow directly from investigations in pure musical acoustics, and are of course indispensable as analysis tools. When it comes to sound synthesis, however, it is not clear that they are necessary—one once has arrived at a satisfactory model of a musical instrument, written as a time-space PDE system (for the resonator) coupled to ODEs (the excitation element and a radiation boundary condition), one may proceed directly to a synthesis algorithm without invoking any notion of frequency, impedance, wave variables, or reflectance. Though one of course loses the powerful analysis perspective mentioned above, the treatment of the resonator becomes independent of any particular bore profile, and the system as a whole is now much more amenable to interesting extensions involving, e.g., time-varying and nonlinear effects which do indeed play a role in wind instruments, and which are not easily approached using impedance or scattering concepts. In the present case, concerned with audio synthesis (and thus efficiency), the model remains 1D; for more on the use of standard numerical techniques in multi-D, in the setting of acoustical analysis of musical instruments, see, e.g., [9].

A standard model of a reed wind instrument is presented in Section 2, followed by a development of a finite difference time domain algorithm in Section 3, including some discussion of implementation details, such as the operation count, and computability issues. In Section 4 simulation results are presented, and in Section 5 a graphical user interface, in the Matlab environment, is exhibited.

2. A STANDARD WIND INSTRUMENT MODEL

2.1. Instrument Body

A standard model of one-dimensional linear wave propagation in an acoustic tube [10] is given by the following set of equations:

$$\rho \frac{\partial u_x}{\partial t} = -p_x \quad \frac{S}{\rho c} \frac{\partial p_x}{\partial t} = -u_x \quad t \geq 0, x \in [0, L] \quad (1)$$

Here, $u(x, t)$ and $p(x, t)$ are the volume velocity and pressure, respectively, at position x, and at time t, and subscripts t and x refer...
to time and space differentiation, respectively. \(\rho \) and \(c \) are the
density and wave speed, respectively, \(S(x) \) is the tube cross-sectional
area at position \(x \), and \(L \) is the length of the tube. See Figure 1. The system above is sometimes
described into a second order system, known as Webster’s equation [11], it is also the
starting point for various speech synthesis algorithms [12], including
the Kelly-Lochbaum model [13] and Webster’s equation [11]; it is also the
starting point for various speech synthesis algorithms [12], including
the Kelly-Lochbaum model [13].

This model results from many simplifying assumptions, the
most important of which are linearity, relatively slow variation in
\(S(x) \) and the size of \(S(x) \) relative to audio wavelengths, and loss-
lessness. For more comments on these assumptions (some more
justifiable than others), see Section 6.

A slightly non-standard model of reed vibration may be given as

\[
\frac{1}{S} \ddot{y} + g \dot{y} + \omega_0^2 \left(y - y_0 \right) - \frac{\alpha}{y_0^\alpha} \left(\frac{\dot{y}}{y_0} \right)^{\alpha-1} = \frac{S_0 \Delta p}{M_r} \tag{3}
\]

Here, \(y(t) \) is the displacement of the reed relative to an equilibrium
displacement \(y_0, M_r \) is the reed mass, \(S_0 \) is an effective surface area of
the reed, \(\omega_0 \) the resonant frequency, and \(g \) a damping parameter.
Dots above variables signify total time differentiation. The term
involving the coefficient \(\omega_1 \) models the collision of the reed with
the mouthpiece. It becomes active when \(y < 0 \), and acts as a
one-sided repelling force, modelled as a power-law nonlinearity,
of exponent \(\alpha \). Here, \(y^-(y - \left| y \right|)/2 \). The reed displacement \(y \) is thus here permitted to be negative. This term, inspired
by collision models used in hammer-string dynamics [14], is the sole
distinguishing feature of the model, which is otherwise identical to
that which appears in the literature [15].

The oscillator above is driven by the pressure difference \(\Delta p \), given by

\[
\Delta p = p_m(t) - p_{in}
\]

where \(p_m(t) \) is the mouth pressure, and \(p_{in}(t) \) the pressure at
the entrance to the acoustic tube. The pressure difference is related to
the flow in the mouthpiece \(u_m \) through Bernoulli’s law,

\[
u_{in} = w y' \sqrt{\frac{2 \Delta p}{\rho}} \text{sign}(\Delta p) \tag{4}
\]

where here, \(w \) is the width of the reed channel. The flow is non-
zero only when the reed is not in contact with the mouthpiece,
or when \(y > 0 \). As such, the quantity \(y^+ \) is given by \(y^+ = \left(y + \left| y \right| \right)/2 \). Neglected here is an inertia term—see, e.g., [11].

The square root dependence of flow on velocity could be general-
ized to a power law [13] with few resulting complications in the
discretization procedure to be outlined below.

The flow variables themselves are related by a conservation
law

\[
\begin{align*}
\dot{u}_{in} &= u_m - u_r \\
u_r &= S_r \dot{y}
\end{align*}
\]

It is useful to introduce scaled variables as follows:

\[
\begin{align*}
y' &= \frac{y}{y_0} - 1 \\
p' &= \frac{p}{\rho c^2} \\
u' &= \frac{u}{c S_0}
\end{align*}
\]

for any pressure variable \(p \) or velocity variable \(u \), which, when
inserted in the above equations (and primes subsequently removed)
lead to the system:

\[
\begin{align*}
\dot{y} + g \dot{y} + \omega_0^2 \left(\frac{y}{y_0} - 1 \right) - \frac{\alpha}{y_0^\alpha} \left(\frac{\dot{y}}{y_0} \right)^{\alpha-1} &= -Q \Delta p \\
\Delta p &= p_m(t) - p_{in}(t) \\
\dot{u}_{in} &= R(y + 1) - \sqrt{\Delta p} \text{sign}(\Delta p) \\
\dot{u}_r &= u_m - u_r \\
\dot{u}_r &= S \dot{y}
\end{align*}
\]

where

\[
\begin{align*}
Q &= \frac{\rho c^2 S_r}{M_r y_0} \\
R &= \sqrt{2 \frac{y_0}{S_0}} \\
S &= \frac{S_0 y_0}{c S_0}
\end{align*}
\]

Note that higher-order effects of the time variation of \(y_0 \) (which is
possible during play), which is generally quite slow, are neglected
here, as in previous treatments of the reed system [15].

It should be clear that in a connection with the acoustic tube
described by 6, it must be true that

\[
p(0, t) = p_{in}(t) \quad u(0, t) = u_{in}(t)
\]

2.3. Bell Radiation

One boundary condition is required at the bell termination. Nor-
mally, in the musical acoustics literature (see, e.g., [11] [19]), one
employs the standard radiation impedance result for an unflanged
tube. Often, this is given, in the low-frequency limit, in a polyno-
monic form obtained through a series approximation. While this is
fine for analysis purposes, positive realness [20] (and thus passivity
is lost), and numerical instabilities can arise in simulation. It is
thus better, in this context, to make use of a rational and posi-
tive real approximation to the radiation impedance (see, e.g., the
form given in ([12]), leading to the following relationship between scaled pressure and velocity at \(x = 1 \):

\[
\frac{u(1,t)}{m(t)} = m = \alpha p(1,t)
\]

(7)

where \(m(t) \) is an auxiliary variable, and where the constants \(\alpha \) and \(\beta \) are given by

\[
\alpha = \frac{3\gamma L}{8} \sqrt{\pi^2 S(1) S_0}, \quad \beta = \frac{9\pi^2 S(1)}{128}
\]

The term with coefficient \(\alpha \) corresponds to the reactive part of the radiation impedance, and that with coefficient \(\beta \) to the resistive part. The extra variable \(m \) is necessary, in the discrete setting, in order to accommodate the extra energy storage required by a reactive termination. One could go much further here, and develop boundary conditions which model radiation to higher accuracy (thus requiring more state), but the positive realness criterion must continue to be enforced (i.e., a higher order polynomial series approximation to the radiation impedance will not suffice). Positive realness of an impedance corresponds directly to bounded realness for the associate reflectance, a quantity which is probably better known to musical acousticians.

3. A SIMPLE FINITE DIFFERENCE SCHEME

A finite difference time domain scheme for system ([1]) is similar to that which appears in 1D electromagnetics simulation ([2]) with the slight added complication of spatial variation in the parameters (i.e., the surface area \(S(x) \)). Introduce staggered grid functions \(p^{n+1/2}_l \) and \(u^{n+1/2}_l \), for integer \(l \) and \(n \); these are approximations to \(p(x,t) \) and \(u(x,t) \) at locations \(x = lh, t = (n + \frac{1}{2})k \) and \(x = (l + \frac{1}{2})h, t = nk \), respectively, where \(h \) and \(k \) are the spacing between adjacent grid points and time step, respectively. See Figure 1 for clarity. The scheme is of the following form:

\[
\left[\frac{1}{S} \left(u^{n+1/2}_{l+\frac{1}{2}} - u^{n+1/2}_l \right) \right] = -\bar{\lambda} \left(p^{n+1/2}_{l+\frac{1}{2}} - p^{n+1/2}_l \right)
\]

(8a)

\[
\left[S \left(u^{n+1/2}_{l+\frac{1}{2}} - u^{n+1/2}_l \right) \right] = -\lambda \left(u^{n+1/2}_{l+\frac{1}{2}} - u^{n+1/2}_l \right)
\]

(8b)

where the Courant number \(\lambda \) is defined as \(\lambda = k\gamma/h \), and where \(\left[\frac{1}{S} \right]_{l+\frac{1}{2}} \) and \([S]_{l} \) are approximations to the continuous function \(S(x) \) at locations \(x = (l + \frac{1}{2})h \) and \(x = lh \), respectively. Under the special choices

\[
\left[\frac{1}{S} \right]_{l+\frac{1}{2}} = \frac{2}{S(lh) + S((l+1)h)}
\]

(9)

\[
[S]_{l} = \frac{1}{4} \left(S((l-1)h) + 2S(lh) + S((l+1)h) \right)
\]

(10)

a necessary condition for numerical stability becomes

\[\lambda \leq 1 \]

(11)

This is the familiar Courant-Friedrichs-Lewy condition ([23, 24]), arrived at through energy techniques (and not frequency or von Neumann analysis, which is not generally applicable to problems with spatial variation) — note that the condition is independent of the variation in \(S \) itself, simplifying implementation somewhat.

In particular, for a given time step \(k \), the grid spacing \(h \) must be chosen so as to divide the unit interval into an integer number of parts, and it is also important that \(\bar{\lambda} \) be satisfied as near to equality as possibility. This leads to the choice

\[N = \text{floor} \left(\frac{1}{\sqrt{\frac{k}{2}}} \right) \quad h = \frac{1}{N} \]

\[N = \text{floor} \left(\frac{1}{\sqrt{\frac{k}{2}}} \right) \quad h = \frac{1}{N} \]

The scheme ([1]) is a one-step scheme in the two grid functions \(p \) and \(u \), and is formally second-order accurate. As illustrated in Figure 1, the grid function \(p^{n+1/2}_l \) is defined for \(l = 0, \ldots, N \), and \(u^{n+1/2}_l \) for \(l = -1, \ldots, N \). Thus updating of \(p \), according to (8b) may be performed directly, but updating of \(u \), according to (8a), at grid locations \(-h/2 \) and \(N + h/2 \) necessarily requires a boundary condition — this will be discussed shortly.

3.1. Scheme for Reed System

For the reed system, given in ([1]), consider the following scheme:

\[
\frac{1}{k^2} \left(y^{n+1} - 2y^n + y^{n-1} \right) + \frac{\gamma}{2k} \left(y^{n+1} - y^{n-1} \right)
\]

\[
+ \frac{\omega_n^2}{2} \left(y^{n+1} + y^{n-1} \right)
\]

\[
+ \frac{\omega_n}{2k} \left(y^{n+1} - y^{n-1} \right) = -Q \Delta p^n
\]

\[
\Delta p^n = p^{n+1}_m - p^n_m
\]

\[
u^{n+1}_m = \mathcal{R} \left(y^{n+1} + \sqrt{|\Delta p^n| \text{sign}(\Delta p^n)} \right)
\]

\[
u^n_m = \frac{S}{2k} \left(y^{n+1} - y^{n-1} \right)
\]

Here, the functions \(y, u, \mu, \nu, \mu_r, \nu_r, p, u_n, \) and \(\Delta p \) have been approximated by time series, with time step \(k \). \(p_m, \mu_m \), in particular, is assumed to be a known input control signal, and \(p_m, \mu_m \), and \(u_m, \nu_m \), will be related to values of the grid function in \(p \) and \(u \) over the problem interior. Worth noting here is the approximation to the stiffness term (with coefficient \(\omega_n^2 \)) and the collision term (with coefficient \(\omega_n^2 \)), both of which make use of semi-implicit discretizations. Such implicit approximations, when applied to lumped systems such as the reed, significantly ease stability requirements, and as long as the unknown value of the grid function appears linearly (as it does here) still allows for fully explicit updating — see Section 3.3. To this end, it is worth reducing the system above to

\[
\Delta \mu^n + a^n_0 \sqrt{|\Delta p^n| \text{sign}(\Delta p^n)} + a^n_2 \mu^n_m = 0
\]

(13)
where the coefficients $a_1^n \geq 0$, a_2^n and $a_3^n \geq 0$ will depend on known (previously computed) values of y^n and the various defining parameters of the reed system. (The non-negativity of a_1^n and a_3^n, follows from the use of semi-implicit discretizations to the stiffness terms.)

In order to couple the reed system to the acoustic tube, one possible approximation to \(\text{(6)} \) is

\[
\begin{align*}
\frac{u_{in}^n}{u} &= \left(\frac{p_{in}^n}{p_0} + \frac{p_{in}^n - p_{in}^0}{2} \right) \\
\text{and} \quad \frac{d^n}{d} &= \text{sign} (\Delta p^n) = \frac{c_2^n}{c_1^n} \sqrt{\Delta p^n} + \frac{c_2^n}{c_1^n} \text{sign} (\Delta p^n) = 0
\end{align*}
\]

(14)

(15)

(16)

Again, as in the case of the reed termination, the unknowns, $u_{N+1/2}^n$ and $p_{N+1/2}^n$ are coupled. In this case, though, the coupling is linear. Employing scheme \(\text{(5)} \) at grid location $l = N$ leads to a unique solution for $u_{N+1/2}^n$ in terms of previously computed values of the grid functions p and u, as well as m, i.e.,

\[
\frac{u_{N+1/2}^n}{u} = d^n
\]

(18)

where d^n depends on previously computed values of the grid functions p and u, as well as m.

3.3. Explicit Updating

It is important to point out that, despite the apparently complex relationship among the stored variables at the terminations and the grid function to be updated over the interior, a purely explicit update form may be arrived at, but the order in which operations are performed is of great importance. Consider the entire scheme at the end of an update cycle, at which point all values at time step n or previously are known, except for the values $u_{n+1/2}^n$ and $u_{n+1/2}^n$. One may then proceed as follows:

1. Calculate Δp^n from \(\text{(16)} \).
2. Calculate y^{n+1} using Δp^n, from \(\text{(15)} \).
3. Calculate u_{n}^n from \(\text{(12c)} \).
4. Calculate u_{n}^n from \(\text{(12d)} \).
5. Calculate u_{n}^n, from \(\text{(12e)} \), and set u_{n}^n from \(\text{(13)} \).
6. Calculate $u_{n+1/2}^{n+1}$ from \(\text{(14)} \).
7. Calculate $\frac{p_{l}^n}{p_{l}^n}$, for $l = 0, \ldots, N$, from \(\text{(17)} \).
8. Calculate $m_{n+1/2}^n$ from \(\text{(17)} \).
9. Calculate $u_{n+1/2}^{n+1}$ for $l = 0, \ldots, N - 1$, from \(\text{(17)} \).

At this point the updating cycle is complete, and the procedure repeats, after shifting data. Proponents of wave digital filtering often call attention to this computability issue, usually dealt with using
so-called reflection-free ports. One may see here that the same property is available using finite difference schemes, and furthermore, numerical solution uniqueness may be ensured (in contrast with wave digital methods making use of nonlinear elements, and power-normalized waves).

3.4. Numerical Stability

The question of numerical stability of the simulation as a whole is a delicate one, but may be dealt with using energy concepts, which have already been applied to variety of other nonlinear musical systems, such as string and plate vibration; it is, however, too large a topic to cover sufficiently in a short publication. In fact, one may definitively prove numerical stability (i.e., boundedness of computed solutions under any possible set of reed and tube parameters, and for any pressure excitation waveform) in the absence of the collision term in (3)—stability under collision conditions is notoriously difficult to show, but the use of a semi-implicit discretization is an excellent ad hoc means of preventing such difficulties. The key point, however, is that if a scheme such as (3) is employed over the domain interior, and the Courant condition is obeyed, then a connection with semi-implicit approximations to energetically well-behaved objects such as the reed or bell termination, there is no further condition necessary. A fuller sketch of numerical stability results for this system will appear in a forthcoming publication.

3.5. Computational Considerations

The computational cost of this algorithm is almost entirely due to the updating of the scheme for the tube, and, as such, is governed by the choice of time step k and grid spacing h, which are related by the CFL condition. The condition should be fulfilled as close to equality as possible—otherwise, excessive numerical dispersion, leading to mode mistuning and a severe limitation in audio bandwidth will result. Thus, for a given time step $k = 1/f_s$, the memory requirement will be almost exactly $2f_s/\gamma = 2f_sL/c$ units. Updating at a single grid point requires three arithmetic operations, and thus the total operation count will be $6f_s^2/\gamma = 6Lf_s^2/c$ operations/second. For typical wind instruments, and at a suitably high audio sample rate, such as $f_s = 44100$ Hz, the operation count will be on the order of tens of megaoperations/second, well within real time capacity on a modest laptop computer. (For example, on the author’s laptop, a Dell with a 2.0 GHz Pentium, and for the case of a clarinet geometry, it takes approximately 3.9 s to generate 5 s of sound output, at 44.1 kHz, in Matlab.) On the other hand, it is more expensive, in terms of arithmetic (though not memory) than a typical waveguide algorithm.

4. SIMULATION RESULTS

4.1. Bore Profiles

It is particularly simple, in the direct FD framework, to alter the bore profile—the function $S(x)$ may be set arbitrarily, and once set, values of the function are used, without further calculations (as of scattering coefficients or impedances) in the simulation. It is thus straightforward to experiment with bore profiles which may differ substantially from, e.g., those which lead to efficient waveguide realizations. See Figure 4. In particular, computational effort is independent of the choice of bore profile.

4.2. Reed Beating

As an example of typical phenomena generated by such a model, consider the perceptually important reed-beating effect, as illustrated in Figure 5. In particular, note that the nondimensional reed displacement takes on values < -1; the extent of such “penetration” may be controlled through the choice of ω_1 and α, but the general results are in agreement with other published results (see, e.g., [29]).

5. GRAPHICAL USER INTERFACE

A graphical user interface has been developed for this synthesis algorithm, using the development tool (GUIDE) in the Matlab programming environment. The user is able to set all reed parameters, the form of the pressure excitation, and a variety of reasonable choices are available for the tube itself, including the usual cylindrical and cone profiles, as well as additional bell geometry specifications. It is also possible to toggle between reed and brass models, and, in the case of brass instruments, to specify a time-varying lip stiffness. See Figure 6. The user interface will be made publicly available in the near future.

6. CONCLUSION

Perhaps the greatest advantage of a fully discrete formulation is fidelity to the physics of the continuous time/space model itself; as a result, many issues which appear in more efficient designs, such as “lumping” of impedances, fractional delay interpolation, etc., may be sidestepped. Another advantage is extensibility—see below for some examples. The greatest disadvantage is computational cost,
Figure 4: Typical output spectra, for various bore types: (a) a cylinder, (b) a cylinder with a clarinet-like bell, and (c) a cylinder with a bell of extreme flare. In each case, the other model parameters correspond, roughly, to those of a clarinet: $\gamma = 512$, $Q = 1.6 \times 10^{10}$, $R = 0.032$, $S = 10^{-6}$, $\omega_0 = 23250$, $g = 3000$.

Figure 6: Non-dimensional output pressure, for the wind model of parameters given in the caption to Figure 4 and using the clarinet-like bore profile shown in Figure 4(b). Top, with a nondimensional mouth pressure of $p_m = 0.01$, center, with $p_m = 0.015$, and bottom, with $p_m = 0.02$.

Figure 7: Graphical user interface for the wind synthesis algorithm.

There are many ways in which the FD wind model here should be extended. Several are in progress, and have not been discussed in this short paper—in particular, there is a simple extension to “blown open” brass-like instruments which is nearly trivial, involving only a single change in polarity of the pressure difference Δp in the model. Such a feature is already included in the GUI mentioned in Section 5. In addition, it is rather straightforward to implement models of woodwind toneholes [31, 32], without the usual concern of commuting or lumping of impedances in instruments of more complex bore profile. Another obvious step is the porting of such an algorithm to a real time environment such as Max/MSP [33] or csound [34]—as noted earlier, a real time implementation is easily possible, and such developments are under way.

Other extensions are also possible. The fully discrete FD approach is very well suited to an extension to nonlinear 1D wave propagation—the linearity hypothesis is probably sufficient for reed
instruments, and brass instruments under moderate amplitude excitation, though nonlinear effects do appear at high amplitudes in instruments such as the trombone [35]. Fully discrete methods in computing shock wave solutions have a very long history in mainstream fluid dynamics applications—see, e.g., the text by Hirsch [36], or the classic article by Sod [37]. The introduction of loss in the acoustic tube, however, is in some ways more problematic. Often, loss in the boundary layer of a tube is modelled in the frequency domain, leading to a square root frequency dependence—when transformed back to the time domain, one arrives at a PDE involving fractional derivatives, which cause immense difficulty numerically, though discrete models of loss have been examined in great detail, in the scattering context, by Matignon [38]. Finally, the model described here is generally valid when bore radius is small compared to audio wavelengths, and when its spatial variation is not too great. In such cases, one may need to resort to models of wave propagation incorporating higher modes, and possibly mode conversion. In the fully discrete case, one could employ a three-dimensional model of the tube, with a very coarse grid approximation in the transverse direction, and another approach might involve multimodal propagation models.

7. REFERENCES

