The role of variation at APP, PSEN1, PSEN2, and MAPT in late onset Alzheimer’s disease

Citation for published version:

Digital Object Identifier (DOI):
10.3233/JAD-2011-110824

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Alzheimer's Disease

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 28. Nov. 2018
The Role of Variation at $\alpha\beta$PP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer’s Disease

Amy Gerrish1, Giancarlo Russo1, Alexander Richards1, Valentina Moskvina1, Dobrel Ivanov1, Denise Harold1, Rebecca Sims1, Richard Abraham1, Paul Hollingworth1, Jale Chapman1, Marian Hamshere1, Jaspreet Singh Pahwa1, Kimberley Dowzell1, Amy Williams1, Nicola Jones1, Charlene Thomas1, Alexandra Stretton1, Angharad R. Morgan1, Simon Lovestone1, John Powell3, Petroula Protsi1, Michelle K. Lupton1, Carol Brayne1, David C. Rubinsztein6, Michael Gill6, Brian Lawlor2, Aoibhinn Lynch2, Kevin Morgan1, Kristelle S. Brown1, Peter A. Passmore1, David Craig3, Bernadette McGuinness3, Stephen Todd1, Janet A. Johnston1, Clive Holmes1, David Mann11, A. David Smith11, Seth Love12, Patrick G. Kehoe12, John Hardy11, Simon Mead14, Michelle K. Lupton3, Carol Brayne1, V Shane Pankratz45, Steven G. Younkin44, Lesley Jones1, Peter A. Holmans1, Michael C. O’Donovan1, Michael J. Owen1 and Julie Williams1

1MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
2King’s College London, Institute of Psychiatry, Kings College, London, UK
3Department of Neuropsychiatry, Institute of Psychiatry, London, UK
4Institute of Public Health, University of Cambridge, Cambridge, UK
5Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
6European Organisation of Medical Research, St. James Hospital and Trinity College, Dublin, Ireland
7Human Genetics Group, School of Molecular Medical Sciences, Queen’s Medical Centre, University of Nottingham, UK
8Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, UK
9Division of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, UK
10Neurodegeneration and Mental Health Research Group, School of Community Based Medicine, University of Manchester, Salford, UK

*Correspondence to: Julie Williams, MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK. Tel.: +44 (0)2920 687667; Fax: +44 (0)2920 687068; E-mail: WilliamsJ@cardiff.ac.uk.

ISSN 1387-2877/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved
378 A. Gerrish et al. / Variation at AβPP, PSEN1, PSEN2, and MAPT in LOAD

11 Oxford Project to Investigate Memory and Ageing, University of Oxford, John Radcliffe Hospital, Oxford, UK
12 Dementia Research Group, University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
13 Department of Molecular Neuroscience and Reta Lilla Weston Laboratories, Institute of Neurology, London, UK
14 MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London
15 Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
16 Department of Psychiatry, University of Bonn, Bonn, Germany
17 Radbourne Unit, Royal Derby Hospital, Derby, UK
18 Institute of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Germany
19 Department of Psychiatry, Charité Berlin, Berlin, Germany
20 Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Germany
21 LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, University Duisburg-Essen, Germany
22 Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
23 Department of Neurology, Klinikum der Universität München, Munich, Germany
24 Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
25 Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
26 Ludwig-Maximilians-University, Department of Psychiatry, Munich, Germany
27 Departments of Psychiatry, Neurology and Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
28 Department of Biology, Brigham Young University, Provo, Utah, USA
29 Mental Health Unit, UCL, London, UK
30 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
31 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
32 Department of Psychology, University of Edinburgh, Edinburgh, UK
33 Medical Genetics, Molecular Medicine Centre, University of Edinburgh, Edinburgh, UK
34 Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
35 MRC Centre for Neuroscience, King’s College London, Institute of Psychiatry, Department of Clinical Neuroscience, London, UK
36 Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
37 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
38 Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
39 Institute of Human Genetics, University of Bonn, Bonn, Germany
40 Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
41 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
42 Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
43 Klinikum Grosshadern, Munich, Germany
44 Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA
45 Division of Biomedical Statistics and Informatics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA

Accepted 5 September 2011
INTRODUCTION

The neuropathological hallmarks of late-onset Alzheimer’s disease (LOAD) are assumed to provide major clues to pathogenesis. These include extracellular plaques, which are predominantly made up of insoluble amyloid-β protein, and neurofibrillary tangles (NFTs), intracellular accumulations of paired helical filaments, which are comprised mainly of hyperphosphorylated forms of the microtubule associated protein, tau [1]. Genes involved in the amyloid pathway and the tau gene, MAPT, have therefore long been considered as putative candidates for involvement in LOAD susceptibility.

Amyloid-β is formed from the cleavage of amyloid-β protein precursor (AβPP) by β- and γ-secretases. Mutations within AβPP, plus presenilin 1 (PSEN1) and presenilin 2 (PSEN2), which encode part of the γ-secretase complex, can cause the autosomal dominant, predominantly early-onset forms of Alzheimer’s disease (EOAD) (Alzheimer Disease & Frontotemporal Dementia Mutation Database; http://www.molgen.ua.ac.be/admutations). These mutations increase cleavage of AβPP by β-secretase [4]. In addition, 185 PSEN1 and 13 PSEN2 pathogenic mutations have been observed in EOAD patients which increase γ-secretase cleavage of AβPP [4].

Genetic variation at the MAPT locus has been convincingly associated with an increased risk of the sporadic tauopathies progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) [5]. The associations reported include several polymorphisms that span the MAPT locus and which are in high linkage disequilibrium (LD). These variants form two extended haplotypes H1 and H2, which have been shown to capture the common haplotypic variation across the gene. H1, the more common haplotype, consists of multiple sub-haplotypes. One of these, H1c has been found to capture the observed association between H1 and both PSP and CBD more effectively [6]. H2 is a less common, single, un-recombining haplotype.

In addition a recent genome-wide association study (GWAS) identified association between MAPT and Parkinson’s disease (PD) [7], where three single nucleotide polymorphisms (SNPs) at the locus surpassed genome-wide significance. Simón-Sánchez and colleagues observed that the risk alleles at each SNP are in LD with the H1 haplotype, thus the findings are consistent with those from other neurodegenerative disorders.

While AβPP, PSEN1, and PSEN2 are established contributors to rare forms of AD, as is MAPT to other neurodegenerative disorders including PD, PSP, and CBD, the question remains whether these genes are implicated in the common form of AD which occurs later in life (>65 years). Relatively recent studies testing these genes for association with LOAD have produced both positive [8–17] and negative results [18–24]. This includes analyses of the MAPT H1 and H1c haplotypes [8, 16, 17, 19, 21, 24]. However, these studies have been underpowered to detect common risk alleles of the effect sizes typically seen in common disorders. We therefore tested variants at the AβPP, PSEN1, PSEN2, and MAPT loci for association with LOAD in an extended version of the Genetic and Environmental Risk in AD Consortium 1 (GERAD1).
case-control dataset, previously published by Harold and colleagues [25], consisting of 3,940 AD cases and 13,373 controls.

MATERIALS AND METHODS

SNPs within 20 kb of AβPP, PSEN1, PSEN2, and MAPT were analyzed for single-marker and gene-wide association to LOAD within the GERAD1 GWAS dataset (directly genotyped and imputed). Meta-analysis between GERAD1 and two publically available datasets was also performed for markers selected from the GERAD1 single-marker analysis. The details of all analyses are given below.

GERAD1 samples

The total sample analyzed in this study was comprised of 4,957 AD cases and 9,682 controls previously described in Harold and colleagues [25] plus an additional 5,529 controls. The sample included 4,113 cases and 1,602 elderly screened controls recruited by the Medical Research Council (MRC) Genetic Resource for AD (Cardiff University; Institute of Psychiatry, London; Cambridge University; Trinity College Dublin); the Alzheimer’s Research UK (ARUK) Collaboration (University of Nottingham; University of Manchester; University of Southampton; University of Bristol; Queen’s University Belfast; the Oxford Project to Investigate Memory and Ageing (OPTIMA), Oxford University; Washington University; St Louis, United States; MRC PRION Unit, University College London; London and the South East Region AD project (LASER-AD), University College London; Competence Network of Dementia (CND) and Department of Psychiatry, University of Bonn, Germany and the National Institute of Mental Health (NIMH) AD Genetics Initiative. In addition, 844 AD cases and 1,255 elderly screened controls were ascertained by the Mayo Clinic, Jacksonville, Florida; Mayo Clinic, Rochester, Minnesota; and the Mayo Brain Bank. All AD cases met criteria for either probable (NINCDS-ADRDA [26], DSM-IV) or definite (CERAD [27]) AD.

The GWAS was performed as described by Harold and colleagues [25]. 5,715 samples were genotyped using the Illumina 610-quad chip; genotypes for the remaining subjects (n = 14,453) were made available either from population control datasets or through collaboration and were genotyped on the Illumina HumanHap 1.2M, 610, 550 or 300 BeadChips. Prior to association analysis, all samples and genotypes underwent stringent quality control (QC), which resulted in the elimination of 58,841 autosomal SNPs and 2,855 subjects. Thus, in Stage 1, we tested 528,747 autosomal SNPs for association in up to 17,313 subjects (3,940 AD cases and 13,373 controls, of whom 3,534 were elderly controls who were screened for cognitive decline or neuropathological signs of AD). The genomic control inflation factor λ [33] was 1.060 ($\lambda_{1000} = 1.010$), suggesting little evidence for residual stratification. SNPs were tested for association with AD using logistic regression, assuming an additive model. Specific details of the logistic regression analysis and the covariates included are given elsewhere [25]. Genome-wide significance was defined as $p < 5 \times 10^{-8}$ as suggested by Pe’er and colleagues [34].

GERAD1 imputation analysis

AD summary statistics were based on 3,940 cases and 13,373 controls from UK, USA, and Germany typed with the Illumina Chips 1.2M, 610, 550, and 300. Genotypes at the 201,228 SNPs common to each of the 4 chips were used as input for imputation. The imputation was performed using IMPUTE2 software [35] with two phased reference panels, the Heinz Nixdorf Recall Study [29, 30], and amyotrophic lateral sclerosis controls [31]. Additional controls, not previously analyzed, included 1,456 elderly screened controls from the Lothian birth cohort, University of Edinburgh (http://www.lothianbirthcohort.ed.ac.uk/), plus 4,069 population controls from either the 1958BC (n = 1,596) or the National Blood Service [32] (n = 2,477). Additional genotypes were also made available for 1,068 1958BC controls previously included in the Harold and colleagues publication [25]. All individuals included in the analysis have provided informed consent to take part in genetic association studies and we obtained approval to perform a GWAS including 19,000 participants (MREC 04/06/030, Amendment 2 and 4; approved 27 July 2007).

Genome-wide analysis

The GWAS was performed as described by Harold and colleagues [25]. 5,715 samples were genotyped using the Illumina 610-quadr chip; genotypes for the remaining subjects (n = 14,453) were made available either from population control datasets or through collaboration and were genotyped on the Illumina HumanHap 1.2M, 610, 550 or 300 BeadChips. Prior to association analysis, all samples and genotypes underwent stringent quality control (QC), which resulted in the elimination of 58,841 autosomal SNPs and 2,855 subjects. Thus, in Stage 1, we tested 528,747 autosomal SNPs for association in up to 17,313 subjects (3,940 AD cases and 13,373 controls, of whom 3,534 were elderly controls who were screened for cognitive decline or neuropathological signs of AD). The genomic control inflation factor λ [33] was 1.060 ($\lambda_{1000} = 1.010$), suggesting little evidence for residual stratification. SNPs were tested for association with AD using logistic regression, assuming an additive model. Specific details of the logistic regression analysis and the covariates included are given elsewhere [25]. Genome-wide significance was defined as $p < 5 \times 10^{-8}$ as suggested by Pe’er and colleagues [34].
Gene-wide analysis

All SNPs located within

PP, PSEN1, PSEN2, and MAPT that were either directly genotyped within the GERAD1 sample or imputed were identified. SNPs were assigned to a gene if they were located within ±20 kb of any transcript corresponding to that gene. P-values were calculated under an additive disease model and adjusted for genomic control (geno-
typed \(\lambda = 1.06 \), imputed \(\lambda = 1.11 \)).

Gene-wide analysis was performed based on the Simes \([37]\) method for conducting multiple tests of significance. The Simes method is less conservative than the Bonferroni method when the tests are not inde-
dependent, and is thus better suited for analyzing multiple SNPs from the same gene (where the individual asso-
ciation tests are likely to be correlated due to linkage disequilibrium). If the p-values for the individual tests are ordered such that \(p(1) \leq p(2) \leq \ldots \leq p(n) \) then the null hypothesis of no association in the gene is rejected at significance level \(\alpha \) if \(p(j) \leq \alpha/n \) for any \(j = 1, \ldots, n \).

The corrected p-value for the joint significance test of all SNPs in a gene using this method (denoted “Simes p-value”) is given by the minimum of \(p(j) \times (n/j) \).

Meta-analysis with additional datasets

Meta-analysis was performed on GERAD1 and two publically available GWAS datasets from the Trans-
lational Genomics (TGEN) Research Institute and the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The TGEN sample, previously reported by Reiman and colleagues \([23]\), is comprised of 861 cases and 550 controls. Imputation of this dataset was performed using MACH software \([38]\) with the August 2010 1000 genomes reference panel. SNPs were tested for asso-
ciation using logistic regression assuming an additive model. Sample population (USA or Netherlands) was included as a covariate.

Meta-analysis was performed by inverse variance weights (IVW) meta-analysis using summary data (i.e., odds ratios [OR] and standard errors). The standard error statistic included in the inverse variance weights meta-analysis accounts for variation in sample size between studies. The Cochran’s Q-test and the I^2 hetero-
genesis index were used to assess heterogeneity between studies. Significant evidence of heterogene-
ity was determined by a Cochran’s Q-statistic p < 0.1 or I^2 > 50. In these instances a random effects meta-
analysis was performed; alternatively, meta-analysis with a fixed effect model was used.

RESULTS

Analysis of PP, PSEN1, PSEN2, and MAPT

A summary of the results is given in Table 1. The most significant SNP at the PSEN1 locus is a 1000 genomes marker at chr4:72745579 (NCBI36, imputed \(p = 1.9 \times 10^{-4} \)) which is located within intron 8 of PSEN1 isoform 1 (NM_016835). The most significant SNP at the PSEN1 locus is a 1000 genomes marker at chr4:72745579 (NCBI36, imputed \(p = 1.9 \times 10^{-4} \)) which is located within intron 8 of PSEN1 isoform 1 (NM_016835) and lies within a 4555 bp of a deletion which has been identified in two AD families. This deletion spans exon 9 of PSEN1 which results in an in-frame skipping of exon 9 and an amino acid change at the splice junction of exon 8 and 9 [40, 41]. At the PP locus, rs381743 shows the greatest evidence for association with AD (imputed \(p = 8.8 \times 10^{-8} \)). rs11656151 is located within intron 8 of MAPT isoform I-467 (NM_016835). The most significant SNP at the PSEN1 locus is a 1000 genomes marker at chr14:72745579 (NCBI36, imputed \(p = 1.9 \times 10^{-4} \)) which is located within intron 8 of PSEN1 isoform 1 (NM_016835) and lies within a 4555 bp of a deletion which has been identified in two AD families. This deletion spans exon 9 of PSEN1 which results in an in-frame skipping of exon 9 and an amino acid change at the splice junction of exon 8 and 9 [40, 41]. The most significant SNP at the PSEN1 locus is a 1000 genomes marker at chr14:72745579 (NCBI36, imputed \(p = 1.9 \times 10^{-4} \)) which is located within intron 8 of PSEN1 isoform 1 (NM_016835) and lies within a 4555 bp of a deletion which has been identified in two AD families. This deletion spans exon 9 of PSEN1 which results in an in-frame skipping of exon 9 and an amino acid change at the splice junction of exon 8 and 9 [40, 41].
Table 1
Analysis of AβPP, PSEN1, PSEN2, and MAPT in the GERAD1 dataset

<table>
<thead>
<tr>
<th>Gene</th>
<th>Gene position ±20 KB (NCBI36)</th>
<th>SNP ID</th>
<th>Info</th>
<th>OR</th>
<th>p value</th>
<th>Simes p value</th>
<th>SNP ID</th>
<th>Info</th>
<th>OR</th>
<th>p value</th>
<th>Simes p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AβPP</td>
<td>chr21:26,154,752-26,485,003</td>
<td>rs2830088</td>
<td>0.91</td>
<td>0.010</td>
<td>0.962</td>
<td>rs381743</td>
<td>0.87</td>
<td>0.91</td>
<td>0.010</td>
<td>0.962</td>
<td>0.87</td>
</tr>
<tr>
<td>PSEN1</td>
<td>chr14:72,652,932-72,776,862</td>
<td>rs362350</td>
<td>0.90</td>
<td>0.020</td>
<td>0.240</td>
<td>chr14:72,745,579</td>
<td>0.80</td>
<td>1.37</td>
<td>1.9×10⁻⁴</td>
<td>0.077</td>
<td>0.80</td>
</tr>
<tr>
<td>PSEN2</td>
<td>chr1:225,104,896-225,170,427</td>
<td>rs2073489</td>
<td>0.96</td>
<td>0.136</td>
<td>0.611</td>
<td>rs12405469</td>
<td>0.81</td>
<td>0.94</td>
<td>0.041</td>
<td>0.784</td>
<td>0.81</td>
</tr>
<tr>
<td>MAPT</td>
<td>chr17:41,307,544-41,481,546</td>
<td>rs1079415</td>
<td>1.00</td>
<td>0.003</td>
<td>0.034</td>
<td>rs14651551</td>
<td>0.84</td>
<td>1.13</td>
<td>8.8×10⁻⁵</td>
<td>0.009</td>
<td>0.84</td>
</tr>
</tbody>
</table>

The most significant results are shown for SNPs directly genotyped and those imputed in the dataset. Odds Ratios (OR) are based on the minor allele. Gene-wide analysis of AβPP, PSEN1, PSEN2, and MAPT in the GERAD1 dataset using the Simes method is also given.

Table 2
Single-marker and meta-analysis results for the most significant SNPs within AβPP, PSEN1, PSEN2, and MAPT, plus the H1 haplotype tag SNP rs9468, within three independent LOAD GWAS samples (GERAD1, TGEN, and ADNI)

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP ID</th>
<th>GERAD1</th>
<th>TGEN</th>
<th>ADNI</th>
<th>Meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AβPP</td>
<td>rs381743</td>
<td>0.87</td>
<td>0.91</td>
<td>0.002</td>
<td>0.96</td>
</tr>
<tr>
<td>PSEN1</td>
<td>chr14:72,745,579</td>
<td>0.80</td>
<td>1.56</td>
<td>1.9×10⁻⁴</td>
<td>0.71</td>
</tr>
<tr>
<td>PSEN2</td>
<td>rs12405469</td>
<td>0.81</td>
<td>0.94</td>
<td>0.041</td>
<td>0.99</td>
</tr>
<tr>
<td>MAPT</td>
<td>rs14651551</td>
<td>0.84</td>
<td>1.13</td>
<td>8.8×10⁻⁵</td>
<td>0.89</td>
</tr>
<tr>
<td>MAPT</td>
<td>rs9468</td>
<td>0.87</td>
<td>0.89</td>
<td>7.8×10⁻⁴</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Inverse variance weights (IVW) meta p-values were calculated from summary statistics. Odds ratios (OR) refer to the minor allele. Meta p-values given are based on a fixed effect model unless Q statistic p<0.1 or I² > 50. In these instances a random effects model was used. N/A = Not available.
MAPT in an imputed GWAS dataset of 3,940 cases to LOAD, we analyzed effects on neurodegenerative disorders. In order to indicated by AD pathology and been shown to have genetic this variant (rs11656151) provided evidence of consistency between samples. However, the TGEN and ADNI datasets are relatively small and replication in much larger samples is needed.

In conclusion, it is unlikely that common variation at AβPP, PSEN1, PSEN2, and MAPT does not provide a strong contribution to AD risk, it is possible that these loci contain as yet undetected rare variants of larger effect. Genome-wide association studies are underpowered to detect these variants and sequencing of several thousand cases and controls would be required to detect rare variants at these loci.

In conclusion, it is unlikely that common variation at AβPP, PSEN1, PSEN2, and MAPT does not provide a strong contribution to disease risk. Replication of this result is necessary although it is likely that large sample
sizes will be required to achieve the power necessary to show a true effect.

ACKNOWLEDGMENTS

We thank the individuals and families who took part in this research. Cardiff University was supported by the Wellcome Trust, Medical Research Council (MRC, UK), Alzheimer’s Research UK (ARUK) and the Welsh Assembly Government. ARUK supported sample collections at the Institute of Psychiatry, the South West Dementia Bank and the Universities of Cambridge, Nottingham, Manchester and Belfast. The Belfast group acknowledges support from the Alzheimer’s Society, ARUK Ulster Garden Villages, Northern Ireland Research and Development Office and the Royal College of Physicians–Dunhill Medical Trust. They also acknowledge the American Federation for Aging Research for the Paul Beeson Career Development Awards in Aging Research Programme for the Island of Ireland. The MRC and Mercer’s Institute for Research on Ageing supported the Trinity College group. The South West Dementia Brain Bank acknowledges support from Bristol Research into Alzheimer’s and Care of the Elderly. The Charles Wolfson Charitable Trust supported the Oxford Project to Investigate Memory and Ageing group. A. Al-Chalabi and C. Shaw thank the Motor Neurone Disease Association and MRC for support. D.C.R. is a Wellcome Trust Senior Clinical Research Fellow. Washington University was funded by US National Institutes of Health (NIH) grants, the Barnes Jewish Foundation and the Charles and Joanne Knight Alzheimer’s Research Initiative. The Mayo GWAS was supported by NIH grants, the Robert and Clarice Smith and Abigail Van Buren AD Research Program, and the Palumbo Professorship in AD Research. Patient recruitment for the MRC Prion Unit at University College London Department of Neurodegenerative Disease collection was supported by the UCL Hospital/UCL Biomedical Centre. London and the South East Region (LASER)-AD was funded by Lundbeck SA. The Bonn group was supported by the German Federal Ministry of Education and Research (BMBF), Competence Network Dementia and Competence Network Degenerative Dementia, and by the Alfred Krupp von Bohlen und Halbach-Stiftung. The Cooperative Gesundheitsforschung in der Region Augsburg (KORA) F4 studies were financed by Helmholtz Zentrum München, the German Research Center for Environmental Health, BMBF, the German National Genome Research Network and the Munich Center of Health Sciences. The Heinz Nixdorf Recall cohort was funded by the Heinz Nixdorf Foundation (G. Schmidt, chairman) and BMBF. Coriell Cell Repositories is supported by the US National Institute of Neurological Disorders and Stroke and the Intra-mural Research Program of the National Institute on Aging. We acknowledge use of DNA from the 1958 Birth Cohort collection and National Blood Service, funded by the MRC and the Wellcome Trust, which was genotyped by the Wellcome Trust Case Control Consortium and the Type-1 Diabetes Genetics Consortium, sponsored by the US National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and Infectious Diseases, National Human Genome Research Institute, National Institute of Child Health and Human Development and Juvenile Diabetes Research Foundation International. Genotyping of the Lothian Birth Cohort (LBC) 1921 and 1936 was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). Recruitment and genotype collection in the Lothian Birth Cohort 1921 was supported by the BBSRC, The Royal Society, and The Chief Scientist Officer of the Scottish Government. Phenotype collection in the Lothian Birth Cohort 1936 was supported by Research Into Ageing (which continues as part of Age UK’s The Disconnected Mind project). The LBC work was undertaken in The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (G0700704/84698). Funding from the BBSRC, EPSRC, ESRC and MRC is gratefully acknowledged. We thank R. Brown, J. Landers, D. Warden, D. Lehmann, N. Leigh, J. Uphill, J. Beck, T. Campbell, S. Kier, G. Adamson, J. Wyatt, M.I. Perez, T. Mettiger, P. Lichtner, G. Eckstein, N. Grafi-Radford, R. Petersen, D. Dickson, G. Fischer, H. Bickel, M. Hüb, H. Jahn, H. Kaduszkiewicz, C. Luckhaus, S. Riedel-Heller, S. Wolf, S. Weyerer, the Helmholtz Zentrum München genotyping staff and the NIMH AD Genetics Initiative. We thank Advanced Research Computing @Cardiff (ARCCA), which facilitated data analysis.

Authors’ disclosures available online (http://www.j-alz.com/disclosures/view.php?id=1000).

REFERENCES

A. Gerrish et al. / Variation at AβPP, PSEN1, PSEN2, and MAPT in LOAD

