Advances in biotechnology over the last ten years have made it possible for the researcher to alter gene expression in vivo in many diverse ways (1). With the establishment of embryonic stem (ES) cell technology (2), more subtle and precise alterations can now be achieved than were previously possible using microinjection techniques. However, to date germline transmission has only been achieved with mouse ES cells, and microinjection continues to be the method most widely used for other species. While the mouse has a number of advantages, not least the depth of our knowledge of its genetics, other species are being increasingly used for transgenic studies due to their greater suitability for addressing specific questions. We will briefly review the application of transgenic technology to nonmurine species as it stands at present, with particular emphasis on developments appertaining to biomedical research.

Transgenesis by pronuclear injection

A number of significant limitations regarding the application of pronuclear injection to nonmurine animals have been identified (3), not least being the time and cost. Such limitations are due to longer gestation and generation times, reduced litter sizes, and higher maintenance costs. Further consideration must be given to the large numbers of fertilized eggs (and hence donor animals) required for microinjection, the high cost of carrying nontransgenic offspring to term, and the relatively low efficiency of gene integration. Such limitations are particularly severe for the production of bovine transgenics and, as a consequence, more significant departures from the standard procedures used for the mouse have been adopted for this species (4). For example, the use of in vitro embryo production in combination with gene transfer technology has played a large role in the development of transgenic cattle. The development of microinjected embryos through to the morula/blastocyst stage in recipient rabbits or sheep, enables sexing, transgene screening, and cloning to take place before reintroduction into the natural host, providing that such screening methods are robust and reliable.

The major problem regarding pronuclear microinjection is that the exogenous DNA integrates randomly into chromo-
somal DNA. Position effects, where the transgene is influenced by its site of integration in the host chromosome (5), can have major consequences on the expression of the transgene, including loss of cell specificity, inappropriately high copy number–independent expression and complete silencing of the transgene. This is of greater concern in nonmurine transgenesis where the investment is higher. Position-independent, copy number–related expression can be achieved using sequences such as the locus control regions identified upstream of the β-globin gene cluster and downstream of the CD2 gene (6, 7), the A elements which flank the chicken lysozyme gene (8), and matrix attachment regions (9). Such elements have been shown to function across species barriers, and their incorporation into gene constructs can overcome position effects and improve expression of heterologous genes within specific cell types (5). In many cases, simply including large amounts of flanking sequences may be sufficient to overcome position effects and direct expression to specific tissues. To this end, the development and use of P1 (10), bacterial artificial chromosome (BAC) (11) and yeast artificial chromosome (YAC) vectors (12) for cloning of large segments of DNA, should greatly improve the chances of including important regulatory elements, including those involved in chromatin structure, within the transgene construct.

Embryonic stem cell technology

With the development of ES cell technology in the mouse (2), genetic manipulations can be performed in cell culture using appropriate selection strategies to permit the directed integration of the transgene to a specific region of the chromosome via homologous recombination. With the advent of homologous recombination, the researcher is able to insertionally inactivate, replace, or introduce subtle alterations to the endogenous gene of interest. Once the intended genetic change has been verified, the appropriate ES cells are introduced into blastocysts by microinjection, and, during subsequent gestation, may contribute to the developing embryo. If such a contribution is made, then by definition the resulting animal would be chimeric, being derived in part from the ES cells originating in culture. Assuming that the chimerism extends to the germline, then an appropriate breeding strategy will lead to the recovery of nonchimeric heterozygotes and, if viable, mice which are homozygous for the genetic change.

Most attempts to isolate and culture inner cell mass (ICM) cells from other species are based on the methods used for the mouse. ES cells are maintained in culture in the presence of mouse-derived differentiation-inhibiting agents, provided either as a media supplement or through cocultivation in the presence of feeder cells. It has been suggested that these mouse-derived agents do not adequately prevent differentiation of stem cells in species other than the mouse, and pluripotent rat ES cells, capable of producing chimeras, were found to grow best on primary rat embryonic fibroblasts as the feeder layer (13). Freshly isolated cells from ICMs have been injected into blastocysts to produce chimeric offspring in both sheep and cattle (14), and their totipotency at this stage is further demonstrated by their ability to produce offspring after transfer into enucleated oocytes (15). Such nuclear transfer techniques are potentially very useful for the production of clonal offspring and would avoid the initial chimeric generation necessitated by the injection of ES cells into blastocysts. Recently, bovine-specific culture methods have shown promise with cells of up to 27 d of age maintaining their ability to direct normal calf development following nuclear transfer (16). However, at the present time the reliable generation of bovine ES cell lines requires the pooling of ICMs from several blastocysts and further efforts are required to enable the long-term culture of clonal bovine ES cells. Although to date chimeric animals have been generated from several species including the pig (17), in no species other than the mouse has germline transmission of an ES cell been successfully demonstrated. This remains a major goal for the future and may well require the use of novel strategies which depart widely from the traditional methods used in the mouse.

Nonmurine species in biomedical research

Selected physiological questions may be more conveniently modelled in the rat or in larger species. Not only can physical size be an advantage for biochemical sampling and physiological analyses, but certain genes may provide useful information when introduced into, for example, the rat genome when parallel experiments in the mouse would be ineffective. Examples include the modulation of blood pressure by the mouse Ren-2 gene (18) and the modeling of inflammatory disease (19). In both cases, but for different reasons, no phenotype was observed in the respective transgenic mice, highlighting one of the advantages of having alternative species for understanding physiological mechanisms and the etiology of disease. More recently, a number of transgenic experiments have been undertaken to investigate lipoprotein metabolism. The human apolipoprotein A-1 gene was successfully expressed in the rat (20), resulting in increased serum HDL cholesterol concentrations, and attempts to therapeutically lower apo B100, and hence LDL and lipoprotein(a) concentrations, in the rabbit were successful (21) but resulted in complications. Although the targeted expression of the apo B-editing protein in the liver of the transgenic rabbits resulted in reduced LDL and lipoprotein(a) concentrations as intended, many of the animals developed liver dysplasia, suggesting that high level expression of the editing protein had unforeseen and detrimental side effects, possibly via the editing of other important mRNAs. The rabbit has also been used in HIV-1 research, with the development of a line expressing the human CD4 protein on T lymphocytes (22). Susceptibility to HIV infection was demonstrated, and although the rabbits are less sensitive to infection than humans, they may represent an inexpensive alternative to primates for many studies.

Gene transfer in farm animals was initially aimed towards improving production efficiency, carcass quality (23), and disease resistance of livestock. However, it has been suggested that the simple over-expression of hormones such as growth hormone may have unacceptable side effects. Recently some elegant studies of growth using transgenic rats have been performed and are likely to yield valuable information on the biochemistry and physiology of growth (24, 25). A more successful application of transgenesis in farm animals has been the production of biomedically important proteins. The two most popular methods have been to direct expression to hematopoietic cells or to the lactating mammary gland. In the former case, transgenic swine expressing high levels of human hemoglobin were generated using the locus control region from the β-globin gene cluster to overcome positional effects and direct expression to the hematopoietic cells (26). However, due to its natural ability to synthesize and secrete large amounts of pro-
tein, the mammary gland has become the primary focus for the expression of heterologous proteins in large mammals. Transgene expression has been successfully directed to the mammary gland using promoter sequences from milk protein genes such as those encoding ovine β-lactoglobulin (BLG), goat β-casein, and murine whey acidic protein. The BLG promoter was used to direct expression of human α1-antitrypsin in lines of transgenic mice and sheep (27). Interestingly, a wide variation in expression was observed between mouse lines, and from one lactation to another within a single line. In sheep however, similar high levels of heterologous protein were expressed in milk over consecutive lactations and over several generations in a given transgenic line, allowing the viable development of a flock of transgenic sheep. In separate studies high levels of expression of human tissue plasminogen activator were obtained in goat’s milk under the control of the goat β-casein promoter (28). The development of suitable purification methods and the use of transgenically produced proteins in clinical trials are well advanced, and, if successful, will have important implications for the production of human proteins in transgenic livestock. Poor expression of the ovine promoter in the mouse may reflect species differences in recognizing heterologous versus homologous promoters and raises questions concerning the predictive value of mouse models. At best therefore the generation of transgenic mice may, in certain cases, only be a guide to the potential success of a transgene construct in another species.

Gene transfer could equally be used to enhance the quality and suitability of milk derived from domesticated animals as a food for human consumption. Human milk is devoid of β-lactoglobulin, which is responsible for most of the allergies to cows’ milk, and has a relatively high content of lactoferrin, which is important in iron transport and combating bacterial infections. One could envisage in the future the reduction of saturated fat content in cows’ milk and the knock-out of unwanted proteins or their replacement with other more useful components. Through the manipulation of milk constituents it should be possible to more closely emulate the desirable components of human milk. The alteration of milk composition would appear to be a practical possibility given that milk micelles are remarkably tolerant to changes in composition, as demonstrated by the knock-out of the mouse β-casein gene (29). Ethical concerns regarding the generation of transgenic animals, which have been engineered specifically for pharmaceutical, medical, or nutritional reasons, lie outside the scope of this overview, however it must be clearly ascertained that expression of a transgene does not compromise the animal.

Xenograft organs for transplantation surgery

The shortage of human organs for transplantation has raised interest in the possibility of xenotransplantation, i.e. the use of animal organs (30). However, the major barrier to successful xenogeneic organ transplantation is the phenomenon of complement-mediated hyperacute rejection (HAR), brought about by high levels of circulating natural antibodies that recognize carbohydrate determinants on the surface of xenogeneic cells. After transplantation of the donor organ, a massive inflammatory response ensues through activation of the classical complement cascade. This leads to activation and destruction of the vascular endothelial cells and, ultimately, the donor organ. The membrane-associated complement inhibitors, endogenous to the donor organ, are species restricted and thus confer only limited resistance. The complement cascade is regulated at specific points by proteins such as decay accelerating factor (DAF), membrane cofactor protein, and CD59. These regulators of complement activation are species specific. The initial strategy used to address HAR in porcine-to-primate xenotransplantation was to produce transgenic pigs expressing high levels of the human terminal complement inhibitor, hCD59. This was shown to protect the xenogeneic cells from human complement-mediated lysis in vitro (31). More recently, organ transplantation has been achieved using donor pigs which expressed human DAF on their endothelium (32), or both DAF and CD59 on erythrocytes, such that the proteins were translocated to the cell membranes of endothelial cells (33). After transplantation, the pig hearts survived in recipient baboons for prolonged periods without rejection (33). Clearly, such genetic manipulations are bringing xenotransplantation ever closer to reality. If the isolation of suitable ES cells and application of homologous recombination becomes a reality in the pig, it may be possible to knockout the antigenic determinants to which antispecies antibodies bind, as a further strategy for eliminating HAR.

Summary

The use of nonmurine species for transgenesis will continue to reflect the suitability of a particular species for the specific questions being addressed, bearing in mind that a given construct may react very differently from one species to another. The application of transgenesis in the pig should produce major advances in the fields of transfusion and transplantation technology, while alterations in the composition of milk in a range of domesticated animals will have major effects on the production of pharmacologically important proteins and could eventually lead to the development of human milk substitutes. Despite the lack of germline transmission to date, major efforts continue to be directed towards the generation and use of ES cells from nonmurine species, using both traditional and new technologies, and the availability of such cells is likely to accelerate both the use of such species and the precision with which genetic changes can be introduced.

References