Human papillomavirus type 18 is associated with less apoptosis in fibroblast tumours than human papillomavirus type 16

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
British Journal of Cancer

Publisher Rights Statement:
1995 Stockton Press

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
SHORT COMMUNICATION

Human papillomavirus type 18 is associated with less apoptosis in fibroblast tumours than human papillomavirus type 16

MJ Arends, AH Wyllie and CC Bird

CRC Laboratories, Department of Pathology, University Medical School, Teviot Place, Edinburgh EH8 9AG, U.K.

Summary In human cervical neoplasia human papillomavirus (HPV) type 18 has a higher cancer cervical intraepithelial neoplasia (CIN) prevalence ratio than HPV 16. Fibrosarcomas derived from rat fibroblasts transfected with HPV 16 or 18 genomes showed increased apoptosis compared with controls. However, HPV 18 was associated with significantly less apoptosis than HPV 16, affording one possible explanation for the more rapidly progressive cervical neoplasia associated with HPV 18.

Keywords: human papillomavirus; apoptosis; programmed cell death

There is strong evidence for a contribution by human papillomaviruses (HPVs) to the development of cervical intraepithelial neoplasia (CIN) lesions and cervical cancer, but the precise mechanisms are still controversial (Arends et al., 1990; zur Hausen. 1994). Clinical and experimental data point to an association of the two common high-risk genital types, HPV 16 and 18, with formation of high-grade premalignant lesions (CIN 2 and 3) (Gissmann. 1984; de Villiers et al., 1987; Arends et al., 1991, 1993a; Lorince et al., 1992; Schiffman et al., 1993). The largest increase in prevalence of HPV 16 and 18 in the spectrum of cervical neoplasia occurs between CIN 1 and CIN 2 (Arends et al., 1991, 1993a; Lorince et al., 1992), and these types may be found in up to 90% of cervical cancers (Xiao et al., 1988; Stanley, 1990; Schiffman et al., 1993). In contrast, the low-risk types. HPV 6b, 11 and others, are most frequently found in genital warts and CIN 1 (Pater et al., 1986; de Villiers et al., 1987; Schiffman et al., 1991). Different HPV types, associated with CIN 2 and 3 lesions, may differentially influence the risk of progression of CIN 2 to invasive cervical cancer. An approximate measure of the risk of transition from precursor lesion to cancer associated with a particular HPV type can be calculated using the ratio of HPV-type prevalence in squamous cancers to that in dysplastic squamous intraepithelial lesions (cancer CIN prevalence ratio). Several studies have shown that HPV 18 is associated with a higher cancer CIN ratio than HPV 16 (Kurman et al., 1988; Lorince et al., 1992; Arends et al., 1993a), suggesting that HPV 18 is associated more often than HPV 16 with dysplastic lesions having the capacity for evolution to cancer, but this observation remains largely unexplained at the cellular level.

At the cellular level the net tumour growth rate reflects the balance of cell gain and loss (Wyllie, 1985; Arends et al., 1994), and in CIN lesions, cell gain is by proliferation and cell loss by apoptosis and surface shedding. HPVs do not appear to influence proliferation rates in CIN lesions, since there are no differences in Ki-67 expression between HPV-positive and -negative CIN biopsies (Tervahauta et al., 1994). Apoptosis may therefore represent a key mechanism by which different HPV types influence net growth rates of CIN. The threshold for susceptibility to apoptosis or its intrinsic rate within tumours, is regulated by many oncogenes and tumour-suppressor genes, such as up-regulation by c-myc or wild-type p53, or down-regulation by mutated ras, bcl-2 or Rb (Arends and Wyllie, 1991; Clarke et al., 1992, 1993; Evans et al., 1992; Shaw et al., 1992; Arends et al., 1993b; Arends and Harrison, 1994; Morgenbesser et al., 1994). The intracellular availability of the products of some of these genes is known to be directly affected by the E6 and E7 oncoproteins of HPV 16 and 18, but there is no information on the levels of apoptosis associated with HPV 16 as compared with HPV 18, or on the relationship of this to tumour growth. In CIN or indeed in any cell type. Here, we address these questions by comparing the behaviour of fibroblast lines growing as tumours in vivo, derived from a common immortalised parent by transfection with HPV 16 or 18 genomes.

Materials and methods

The parent cell line was the Fischer rat lung fibroblast 208F (Quade, 1979), and transfectants were derived from it as previously described (Arends et al., 1993b, 1994), bearing (1) HPV genomes of types 16 or 18 (Storey et al., 1988), without (H16 and H18) or with (H16R and H18R) the plasmid pHOST1 (Spanididos and Wilkie, 1984) that expressed the human T24-Ha-ras-1 oncogene with a point mutation at codon 12; (2) only the T24-ras expression vector pHOST1 (T1) (Spanididos and Wilkie, 1984), and (3) only the c-myc expression plasmid pHMCGM1 (M8) (Arends et al., 1993b). Approximately 10 million cells were injected subcutaneously into the groins of between 6 and 11 immunosuppressed CBA mice. prepared as previously described (Wyllie et al., 1987; Arends et al., 1994), for each cell line. Animals were subjected to autopsy after 12 days. All analytical techniques were as described previously (Arends et al., 1993b, 1994). In brief, the size of tumours growing at the injection site was measured in three dimensions in millimetres, and these were multiplied together to give a nominal 'box volume' convenient for comparisons. Representative equatorial blocks of tumour were fixed in formalin, processed and stained with haematoxylin and eosin. The number of mitotic and apoptotic figures were counted per ten high-power fields. for at least six tumours formed by each cell line. Tumour necrosis was assessed on a four-point scale. The raw data for mitotic counts and apoptotic counts were combined to form ratios of apoptotic mitosis (A/M) in an attempt to correct for bias introduced into these counts through differences in cell size and packing density.

Correspondence: MJ Arends
Received 14 February 1995. accepted 10 April 1995
Results

Fibroblast tumours formed by all transfected cell lines, except H18R, had significantly higher absolute levels of apoptosis than the small nodules generated by the parent cell line 208F (P<0.00001 for all comparisons, except for T1 vs 208F, P<0.05) (Figure 1). HPV 18 consistently demonstrated lower absolute levels of apoptosis than HPV 16, either alone (P<0.00001 for H16 vs H18) or in combination with T24-ras (P<0.00001 for H16R vs H18R). Tumours of transfecants containing either HPV 16 or 18 showed apoptotic counts similar to those of the c-myc transfecant M8, but H16 showed significantly higher levels of apoptosis (P<0.00001), whereas H18 formed tumours with lower apoptotic counts that did not significantly differ from M8. T24-ras in combination with either HPV-type generated tumours with significantly less apoptosis than transfecants containing HPV alone (P<0.00001 for both H16R vs H16, and H18R vs H18). The values for tumour cell proliferation, as determined by the mitotic counts, were similar for the four HPV-containing transfecants (Figure 1). The only significant differences in mitotic counts were between H16 and either H18 or H18R (P<0.0005 for both comparisons) and these were relatively small compared to the differences in apoptotic counts.

All transfecants generated tumours which were larger in size than the static or regressing nodules formed by the parent cell line 208F (Figure 1). Tumours formed by H18 were larger than those formed by H16. However, H16R tumours were similar in size to those formed by H18R, both of which showed marked central necrosis. Student's t-tests showed significant differences in tumour size between 208F and the transfecants H16R (P<0.0001), H18 (P = 0.035), and T1 (P<0.0001); and also between H16 and H16R (P = 0.0037).

Comparisons of cell turnover parameters with tumour sizes for the four HPV-containing transfecants (H16, H18, H16R and H18R) showed that apoptotic counts inversely correlated with tumour sizes (r = -0.79), whereas mitotic counts positively correlated with tumour sizes (r = 0.85). The A:M ratios also correlated inversely with tumour sizes (r = -0.87). Overall, for all seven cell lines, including 208F, M8 and T1, log A:M ratios showed an inverse correlation with tumour sizes (r = -0.81; regression equation log A:M = 1.16 - 1.55 x size; P = 0.029) and with log tumour sizes (r = -0.93; regression equation log A:M = -0.805 - 1.31 x log size; P = 0.002).

Discussion

The two common high-risk genital HPV types were associated with moderate to high levels of tumour cell apoptosis, similar in degree to that stimulated by c-myc, previously shown to be a potent inducer of apoptosis (Wylie et al., 1987; Evan et al., 1992; Arends et al., 1993b, 1994). HPV 18 was associated with lower levels of tumour apoptosis than HPV 16, and this pattern was not modulated by the presence of T24-ras. The sizes of tumours correlated inversely with both the absolute levels of apoptosis and the ratios of apoptosis mitosis. Thus, the intrinsic rate of apoptosis within tumours is differentially modulated by HPV type and appears to be a major regulator of net growth rate.

Possible mechanisms by which HPV 16 and 18 E7 proteins may stimulate apoptosis include the binding and inactivation of Rb protein (Phelps et al., 1988; Munger et al., 1989, 1991), resulting in several consequences: first, prevention of an Rb anti-apoptotic effect (Clarke et al., 1992; Morganbesser et al., 1994); second, release of both c-myc and E2F-1 proteins from complexes with Rb (Rutger et al., 1991; Wagner and Green, 1991); and third, release of repression of c-myc transcription (Moses et al., 1990; Pietenpol et al., 1990; Chittenden et al., 1991). Both c-myc and E2F-1 are associated with induction of apoptosis (Evan et al., 1992; Moran, 1993; Wu and Levine, 1994) as well as proliferation and this pathway may explain the similarities of levels of tumour cell apoptosis shown here between HPV 16 18 and myc transfecants. HPV E7 transgenic mice have been used to confirm the induction of apoptosis by cell specific expression of E7 (Howes et al., 1994; Pan and Griepe, 1994).

HPV 16 and 18 E6 products have apoptosis-suppressing effects, as they both bind p53 and direct its rapid degradation (Werness et al., 1990; Scheffner et al., 1991). Wild-type p53 (but not mutant p53) has been shown to induce apoptosis in myeloid, lymphoid and epithelial cells (Yonish-Rouach et al., 1991; Shaw et al., 1992; Clarke et al., 1993, 1994), and studies in both fibroblast cell lines and transgenic mice have suggested that E6 can block the apoptosis-inducing function of p53 in the presence of HPV E7 (Howes et al., 1994; Pan and Griepe, 1994; White et al., 1994). Thus, the two HPV transforming genes have opposing effects on apoptosis: stimulation via HPV E7-mediated inactivation of Rb with activation of both myc and E2F-1 and inhibition via HPV E6-mediated degradation of wild-type p53. The relative strengths of these activities will be affected by the comparative levels of expression of E7 and E6, and their relative

Figure 1 Bar chart of growth properties of tumours derived from the parent control (208F), a c-myc transfecant (M8), four HPV-containing transfecants (H16, H16R, H18, H18R) and a T24-ras transfecant (T1). The means (± s.e.m. as error bars) of mitotic and apoptotic counts per ten high-power fields for six tumours are shown, along with tumour sizes in cm³. □: Mitosis; □: apoptosis; □: size.
efficiencies in terms of protein function and stability. One speculative explanation for the lower levels of apoptosis associated with HPV 18 is that there may be saturation of the p53-Rb—E2F pathway by both HPV types (both show increases in apoptosis above control levels that are similar to myc-induced levels), but higher activity of the anti-apoptotic E6—p53 pathway associated with HPV 18 owing to greater concentrations of HPV 18 E6 (compared with HPV 16 E6), because of the more efficient upstream regulatory region of HPV 18 producing higher levels of expression of the E6 gene (Barbosa and Schlegel; 1989; Romanczuk et al., 1991). Phenotypic analysis of authentic human cervical cancers containing HPV 16 and 18 genomes has indicated that HPV 18 is associated with greater aggression than HPV 16 in terms of progression from CIN to cancer, assessed by cancer CIN prevalence ratios (Kurman et al., 1988; Lorincz et al., 1992; Arends et al., 1993a). If the lower apoptosis and faster growth rate associated with HPV 18 compared with HPV 16

in this fibroblast system also occurred in cervical keratinocytes in CIN lesions in vivo, this would result in more rapid production of CIN cells, increasing the probability of further genetic changes required for transition to malignancy, such as integration of the HPV genome, activation of cellular oncogenes or loss of oncoppressor genes. Furthermore, selection pressures may be different, in that reduced apoptosis due to greater inactivation of p53 by HPV 18 E6 may allow survival of DNA-damaged cells that would otherwise die by p53-induced apoptosis after genotoxic injury.

Acknowledgements

The authors wish to thank Dr A Storey and Dr L Crawford for generously providing the HPV 16 and 18 expression plasmids; the Cancer Research Campaign, Scottish Home and Health Department, Medical Research Council and Sir Stanley and Lady Davidson Lectureship and Research Fund for financial support; and David Burns, Robert Morris and Derek Bishop for technical support.

References

