Progestosterone for the prevention of preterm birth in twin pregnancy (STOPPIT)

Citation for published version:

Digital Object Identifier (DOI):
10.1016/S0140-6736(09)60947-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher’s PDF, also known as Version of record

Published in:
The Lancet

Publisher Rights Statement:
Available under Open Access

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Progesterone for the prevention of preterm birth in twin pregnancy (STOPPIT): a randomised, double-blind, placebo-controlled study and meta-analysis

Jane E Norman, Fiona Mackenzie, Philip Owen, Helen Mactier, Kevin Hanretty, Sarah Cooper, Andrew Calder, Gary Mires, Peter Danielian, Stephen Sturgiss, Graeme MacLennan, Graham Tydeman, Steven Thornton, Bill Martin, James G Thornton, James P Neilson, John Norrie

Summary

Background Women with twin pregnancy are at high risk for spontaneous preterm delivery. Progesterone seems to be effective in reducing preterm birth in selected high-risk singleton pregnancies, albeit with no significant reduction in perinatal mortality and little evidence of neonatal benefit. We investigated the use of progesterone for prevention of preterm birth in twin pregnancy.

Methods In this double-blind, placebo-controlled trial, 500 women with twin pregnancy were recruited from nine UK National Health Service clinics specialising in the management of twin pregnancy. Women were randomised, by permuted blocks of randomly mixed sizes, either to daily vaginal progesterone gel 90 mg (n=250) or to placebo gel (n=250) for 10 weeks from 24 weeks’ gestation. All study personnel and participants were masked to treatment assignment for the duration of the study. The primary outcome was delivery or intrauterine death before 34 weeks’ gestation. Analysis was by intention to treat. Additionally we undertook a meta-analysis of published and unpublished data to establish the efficacy of progesterone in prevention of early (<34 weeks’ gestation) preterm birth or intrauterine death in women with twin pregnancy. This study is registered, number ISRCTN35782581.

Findings Three participants in each group were lost to follow-up, leaving 247 analysed per group. The combined proportion of intrauterine death or delivery before 34 weeks of pregnancy was 24·7% (61/247) in the progesterone group and 19·4% (48/247) in the placebo group (odds ratio [OR] 1·36, 95% CI 0·89–2·09; p=0·16). The rate of adverse events did not differ between the two groups. The meta-analysis confirmed that progesterone does not prevent early preterm birth in women with twin pregnancy (pooled OR 1·16, 95% CI 0·89–1·51).

Interpretation Progesterone, administered vaginally, does not prevent preterm birth in women with twin pregnancy.

Introduction

Multiple pregnancies accounted for 1·6% of all births in the UK during 2007,1,2 with more than 98% of these multiple births being twin births.2 Rates of stillbirth and neonatal mortality for multiple pregnancies are 14·9 and 19·8 per 1000 livebirths, respectively, and are three to eight times higher than for singleton pregnancies.3 The economic costs of health-care provision in the first 5 years of life are twice as high per child after twin birth compared with singleton birth.3

Prematurity continues to be the major cause of neonatal death in multiple births, with preterm labour potentially the most treatable cause of prematurity.4 In the long term, the morbidity in both singleton and multiple survivors of preterm birth is well documented, and is known to lead to poor health and reduced achievement both in school and in adulthood.5 Such morbidity is associated with major financial costs to the health service, and with personal suffering to the individuals and their families.

No effective interventions have been shown to prevent preterm delivery in twin pregnancy. By contrast, three large randomised trials6–8 have suggested that progesterone might prevent preterm delivery in high-risk singleton pregnancy. The likelihood of preterm birth in women with singleton pregnancy who are identified at risk of preterm delivery because of either a previous preterm delivery6,7 or a short cervix8 might be reduced by antenatal progesterone. Importantly, evidence that a reduction in the rate of preterm birth is accompanied by neonatal benefit is scarce because there is no reduction in perinatal mortality, and risk of neonatal sepsis is the only secondary neonatal outcome that is reduced in babies of women with singleton pregnancy treated with antenatal progesterone.9

The STOPPIT study (STudy Of Progesterone for the Prevention of Preterm Birth In Twins) was designed to test the hypothesis that the occurrence of delivery or intrauterine death before 34 weeks and 0 days of gestation would be lower in women with twin pregnancy randomly assigned to progesterone gel than in those randomly assigned to matching placebo.

Methods

Participants

Women were recruited between Dec 1, 2004, and April 30, 2008 from specialised antenatal clinics caring for women...
with multiple pregnancy at nine UK National Health Service hospitals. All women with a twin pregnancy, with gestation and chiorionicity established by scan before 20 weeks’ gestation, and attending the antenatal clinic during the recruitment period were eligible for recruitment. Women were not eligible if their pregnancy was complicated by a recognised structural or chromosomal fetal abnormality at the time of recruitment, or if they had contraindications to progesterone, planned cervical suture, planned elective delivery before 34 weeks’ gestation, or planned intervention for twin-to-twin transfusion before 12 weeks’ gestation. Women with higher multiple pregnancy were also excluded.

Participants gave written informed consent, and the study was granted approval by the West Glasgow Ethics Committee 1 (reference 04/S0703/13).

Procedures

We aimed to recruit and randomly assign women at 22 weeks’ gestation. When possible, the project was discussed with women at booking, and again at 22 weeks’ gestation. All women had at least 1 week to decide whether to participate. Participants were randomly assigned to either daily progesterone gel (90 mg; Crinone [Serono, Feltham, Middlesex, UK]) or to placebo gel administered vaginally by the participant and starting at 24 weeks and 0 days of gestation. Drugs were supplied in a sealed opaque covering. Every cover contained a single-use, one piece, white polyethylene applicator with a twist-off top, designed for intravaginal self-insertion. Each applicator contained 1.45 g of gel and delivered 1.125 g of gel, containing either 8% progesterone or excipients (glycerin, light liquid paraffin, hydrogenated palm oil glyceride, carbopol 974P, sorbic acid, polycarbofil, sodium hydrosxide, and purified water).

We used a randomisation schedule with permuted blocks of randomly mixed sizes to make up treatment packs (either active or placebo) for every patient, which were held in individual hospital pharmacies until use. On recruitment, the local researcher (usually a midwife) telephoned the interactive voice response randomisation application at the UK Clinical Research Network registered trials unit (The Centre for Healthcare Randomised Trials [CHaRT], in the Health Services Research Unit, University of Aberdeen, UK), to be given a participant number that corresponded to a specific treatment pack. We used a minimisation algorithm incorporating hospital and chiorionicity to assign participants to the randomised treatment group.

All study personnel and participants were masked to treatment assignment for the duration of the study. Only the study statistician and the independent Data Monitoring Committee had access to unblinded data, but none had any contact with study participants.

Outcomes

The primary outcome was delivery or intrauterine death before 34 weeks and 0 days of gestation. We used delivery of the first twin to define the time of delivery. If one twin died in utero before 34 weeks and the other was born alive after 34 weeks, intranatal fetal death was defined as occurring before 34 weeks. The gestational age was calculated from ultrasound scan done before 20 weeks. The maternal secondary outcomes were gestation at delivery, method of delivery (spontaneous vaginal delivery, vaginal breech, forceps or ventouse, or caesarean section), duration of each stage of labour, and safety outcomes such as duration of stay in hospital. Neonatal secondary outcomes were neonatal unit admission and duration of neonatal unit care. We also ascertained maternal satisfaction by questionnaire. Women were followed up from randomisation until they gave birth. Outcomes were recorded from the hospital notes, and entered into a web-based data capture system by a trained clinician, usually a study midwife.

Statistical analysis

The proportion of deliveries before 34 weeks’ gestation in twin pregnancy is about 20% (Chalmers J, Information Services Division, NHS Scotland, Edinburgh, UK, personal communication). Our study size of 250 women per group gave 85% power at 5% significance level to show a reduction in the rate of preterm delivery or intrauterine death before 34 weeks’ gestation from 20% to 10% in the active treatment group and was based on a conservative estimate of likely effect size derived from previous studies.6,7

Figure 1: Trial profile
Analysis was done by intention to treat and followed a prespecified statistical analysis plan. For the primary outcome, the odds ratio (OR) of the treatment effect, adjusting for the minimisation covariate (chorionicity), was estimated with a 95% CI, and associated likelihood ratio p value with logistic regression. We also undertook a predefined subgroup analysis of the primary outcome by monochorionicity (yes or no). We analysed continuous maternal secondary outcomes with normal linear regression models, adjusting for chorionicity. Treatment effects, 95% CIs, and p values were calculated as described in the statistical analysis plan. We analysed binary categorical secondary outcomes with logistic regression as per the primary outcome. For data with multiple categories (eg, method of delivery), we compared the two randomised groups with a proportional odds model.

Fetal outcomes allowed for the clustering within twins. Analyses were as for the maternal outcomes, except with the addition of mother as a random effect in the linear and logistic regression models. No missing data were imputed. No adjustment was made for any multiple comparisons. An independent Data Monitoring Committee met regularly throughout the study. No formal interim analyses were undertaken, and so no adjustment was made. All statistical analyses were undertaken in SPSS for Windows (version 17.0.0) and Stata (version 10.1).

The trial was registered on EUDRACT, number 2004-000780-10, and as an International Standard Randomised Controlled Trial, number ISRCTN35782581.

Meta-analysis

We did an electronic search of the published medical literature (PubMed and Cochrane Controlled Trials Register) for studies in which women with twin pregnancy were randomly allocated to treatment with a progestogen (including progesterone, 17-hydroxyprogesterone caproate) or placebo in the second or third trimester with the intention to prevent preterm birth. We used the search terms “preterm birth” AND “[progesterone” OR “17 hydroxyprogesterone caproate” OR “progestogen”] AND “[pregnancy multiple” OR “pregnancy twin”] AND “randomised controlled trial” AND “human”. We considered all published randomised controlled trials in which progestogens were given to women with twin pregnancy for the prevention of preterm birth. We excluded those in which progestogens were given to women with symptoms of preterm labour, or in which data were available in abstract form only. Two reviewers (J E Norman and J Norrie) reviewed identified papers for relevance and quality, and abstracted the data. Published studies were assessed for quality according to Jadad’s quality assessment scale.10 Our prespecified primary outcomes were the incidence of delivery or intrauterine fetal death before 34 weeks’ gestation. When data for our primary outcome of interest were not available in the published report, we contacted the relevant chief investigator to obtain the required information. We calculated ORs and 95% CIs for the primary outcome.

Role of the funding source

Neither the funder nor the supplier of active and placebo drugs had any role in study design, data collection, data

<table>
<thead>
<tr>
<th>Demographics and lifestyle</th>
<th>Progesterone (n=250)</th>
<th>Placebo (n=250)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years [SD; min–max])</td>
<td>33 (5; 18–44)</td>
<td>33 (6; 19–50)</td>
</tr>
<tr>
<td>Current smoking</td>
<td>44 (18%)</td>
<td>31 (12%)</td>
</tr>
<tr>
<td>Current alcohol</td>
<td>179 (72%)</td>
<td>177 (71%)</td>
</tr>
<tr>
<td>Obstetric history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity (>0)</td>
<td>119 (48%)</td>
<td>122 (49%)</td>
</tr>
<tr>
<td>Miscarriage (>0)</td>
<td>3 (1%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Medical disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (1%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Insulin-dependent diabetes</td>
<td>1 (<1%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Respiratory disease</td>
<td>8 (3%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>2 (1%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Neurological disease</td>
<td>0</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>Skin condition</td>
<td>4 (2%)</td>
<td>8 (3%)</td>
</tr>
<tr>
<td>Thrombophilia</td>
<td>2 (1%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>

Fetal anomaly scan: twin 1

Normal	242 (97%)	243 (97%)
Defined abnormality	3 (1%)	1 (<1%)
Uncertain abnormality	0	0
Not done	5 (2%)	6 (2%)

Fetal anomaly scan: twin 2

Normal	242 (97%)	242 (97%)
Defined abnormality	3 (1%)	2 (1%)
Uncertain abnormality	0	0
Not done	5 (2%)	6 (2%)

Amniocentesis for twin 1 abnormal | 0 | 0 |

Amniocentesis for twin 2 abnormal | 0 | 0 |

CVS done | 1 (<1%) | 0 |

<table>
<thead>
<tr>
<th>Odds ratio progesterone vs placebo (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n Event (%)</td>
<td>n Event (%)</td>
</tr>
<tr>
<td>Monochorionic pregnancies</td>
<td>46</td>
</tr>
<tr>
<td>Dichorionic pregnancies</td>
<td>201</td>
</tr>
</tbody>
</table>

*Refers to p value for proportion in progesterone versus placebo group (from a logistic regression model adjusting for chorionicity). For test of interaction between monochorionic and dichorionic pregnancies, p=0.056.

Table 2: Baseline characteristics

Table 2: Primary outcome (proportion of women delivering or with intrauterine death before 34 weeks) overall and by subgroup of chorionicity
Results

Figure 1 shows the trial profile. Participants attended clinic visits at the time of randomisation (baseline) and at intervals during pregnancy, and were admitted to the study hospital for delivery and postnatal care.

Table 1 shows the baseline demographics and clinical characteristics of the participants. Three women in each of the progesterone and the placebo groups were lost to follow-up (because of withdrawal of consent or not traceable after moving out of study area); thus data from 494 patients were available for the intention-to-treat analysis of the primary outcome. No patients were considered protocol violators, and none were unblinded before ascertainment of all outcomes. Thus 494 mothers and 988 babies remained for the per-protocol analyses.

The proportion of women delivering or with an intrauterine death before 34 weeks was 61/247 (24·7%) in the progesterone group and 48/247 (19·4%) in the placebo group (OR 0·42, 0·21–0·83; p=0·013; table 2). Thus, by contrast with our original hypothesis, progesterone did not reduce the incidence of preterm delivery or intrauterine death before 34 weeks’ gestation. Subgroup analysis of the primary outcome by chorionicity suggested an increase in the rate of preterm delivery or intrauterine death before 34 weeks in association with progesterone in women with dichorionic pregnancies (table 2). However, the p value for the formal test of interaction between the monochorionic and dichorionic groups was not significant (p=0·056), implying that the response to treatment in the monochorionic and dichorionic groups did not differ significantly. Thus the finding of increased rates of adverse outcomes in the dichorionic group should be interpreted with suitable caution.

Tables 3 and 4 show secondary maternal outcomes, table 5 neonatal outcomes, table 6 safety issues, table 7 side-effects, and table 8 maternal satisfaction. The only apparent differences between the groups were reduced odds of caesarean (OR 0·53, 95% CI 0·34–0·84; p=0·006), operative vaginal delivery (OR 0·42, 0·21–0·83; p=0·013), and nausea (OR 0·43, 0·20–0·94; p=0·035) in the progesterone group. The rate of adverse events did not differ between the two groups (table 6).

136 women in the progesterone group and 151 women in the placebo group returned diaries indicating that they had taken 80% or more of their medication. The remainder either did not return their diary or stopped early because of preterm delivery, because they were told to stop, or because they were incompletely compliant with treatment.

Electronic searching of published work generated 198 results relevant for meta-analysis. Review of the abstracts indicated that only two studies fulfilled the inclusion criteria. Relevant data could be abstracted from one of these papers.9 In view of the discrepancy between the published primary outcome (spontaneous preterm delivery before 34 weeks’ gestation) and the outcome we planned for the meta-analysis (intrauterine death or any preterm delivery before 34 weeks’ gestation) we contacted the senior author of the other paper8 who supplied the relevant data. A further paper10 was not found on electronic searching, but was brought to the attention of the authors and considered for inclusion. This paper showed that the
primary outcome (spontaneous preterm delivery before 37 completed weeks of gestation) was again different from the one that we planned in the meta-analysis, and because the paper was published in 1980, we decided that contacting the author for further information would not be helpful. Both trials included in the meta-analysis were rated as of highest quality according to the Jadad score. The pooled OR of the effect of progesterone in preterm delivery or intrauterine death before 34 weeks’ gestation was 1.16 (95% CI 0.89–1.51; figure 2).

Discussion
We have shown that progesterone did not reduce the composite outcome of risk of delivery or intrauterine death before 34 weeks of pregnancy in women with twin pregnancy. Our results accord with the other large published trial in twin pregnancy that used 17-hydroxyprogesterone caproate (250 mg) given intramuscularly from 16–20 to 35 weeks, and with the most recent meta-analysis on this issue. The relative risk of preterm birth or intrauterine death before 35 weeks in the 655 women available for analysis was 1.1 (95% CI 0.9–1.3) in the active compared with the placebo group.

Our study has the following strengths. It was a double-blind, placebo-controlled trial with central randomisation, and it had a prespecified sample size that was achieved, a prespecified primary endpoint and analysis plan that was followed, and a high rate of follow-up. Loss to follow-up for the primary outcome was small. Our exclusion criteria were few, and thus more than four-fifths of women with twin pregnancy were eligible for the study.

Potential limitations of our study are that the uptake of the study in eligible participants was less than we initially anticipated, with only 40% (500/1249) of eligible women agreeing to participate, and that the study was largely undertaken in tertiary referral centres. These issues could have affected the external validity of our trial. The overall rate of preterm delivery or intrauterine death before 34 weeks was 22% (109/494), which is similar to another (singleton) study in which progesterone was shown to be effective. The dose of vaginal progesterone was similar to the dose used in that singleton study, although less than that in another. The dose we used is at the lower end of proven effective doses, but meta-analyses have not shown a dose-response effect.

We therefore believe that the dose of progesterone we used was unlikely to have been too small.

Our unexpected observation of overall lower rates of both caesarean section and operative vaginal delivery in the progesterone group should be interpreted with caution. We noted no effect on any other labour parameters and no significant effect when we analysed pre-labour and post-labour caesarean sections separately. The effect on caesarean delivery was not detected in other large studies using progesterone during twin pregnancy (relative risk 1.0, 95% CI 0.9–1.1) or singleton pregnancy (0.94, 0.68–1.30). Progesterone is unlikely to have reduced caesarean section by improving fetal wellbeing, in view of the trend towards increased perinatal mortality that we recorded (14 deaths in the progesterone group vs ten in the placebo group). Furthermore, progesterone was unlikely to have improved uterine contractility during labour since it is known to have a relaxant, rather than a stimulatory, effect on the
an odds ratio of 0.65 or less, they will not change the
of 95% CIs)—unless their combined eff ect size is large with
0.0163020, with a combined planned sample size
(NCT00343265, NCT00480402, NCT00141908, and NCT
planned sample size of 660] and four smaller trials
planned sample size of 750] and ISRCTN40512715 [with
large trials (registration numbers NCT00329914 [with a
of preterm delivery in twin pregnancy are ongoing—two
progesterone caproate or progesterone in the prevention
of 17-hydroxy-progesterone are not eff ective in women with twin
pregnancy for prevention of preterm delivery. Although
clinical implication of our study is that
improvement in the health of off spring. At present,
clinically useful if accompanied by long-term
preterm birth, although this reduction will only be
meta-analyses of high-risk singleton pregnancies in
world.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.

The clinical implication of our study is that
progesterogens are not eff ective in women with higher multiple pregnancy (eg, triplets),
infl ammation a role in singletons. We did not recruit
of preterm delivery in twin pregnancy, and infection and
labour in twin pregnancy, and this hypothesis merits further study. Perhaps stretching
might be different in twin and singleton pregnancy, and
this hypothesis merits further study. Perhaps stretching
uterus.15 Because reduction in caesarean section is one of
several secondary outcomes in our study, and because of
the absence of biological plausibility and no confirma-
tion from other studies, we believe that this finding is most
likely to be one of chance.
Acknowledgments

This study was funded by research grant CZH/4/200 from the Chief Scientist Office of the Scottish Government Health Directorate. Active and placebo drugs were manufactured and donated by Serono, London, UK. We are grateful to both organisations for their support. The joint study sponsor in terms of the EU Clinical Directive was the University of Glasgow and Greater Glasgow Health Board, UK. The Health Services Research Unit and CHaRT are funded by the Chief Scientists Office of the Scottish Government Health Directorates. The views and opinions expressed in this paper are those of the authors and do not necessarily reflect those of the Scottish Government Health Directorates. We thank our institutions and colleagues for their help and support in enabling us to undertake this study, particularly Gladys McPherson and Alison McDonald at the Centre for Healthcare Randomised Trials (CHaRT), the study data centre at the University of Aberdeen; the research midwives and other recruiting staff who did such an excellent job: Frith Robb and Beth Turner at the Royal Infirmary of Edinburgh (132 recruits), Marion McKeans at Princess Royal Maternity Glasgow (99 recruits), Sandra Bosman at the Royal Victoria Infirmary Newcastle (68 recruits), Joan Murphy and Joanne Higgins at the Queen Mother’s Hospital, Glasgow (62 recruits), Ann Cameron at Ninewells Hospital Dundee (61 recruits), Myra Kinnaird at Aberdeen Maternity Hospital (54 recruits), Paul Allocat at Forth Park Hospital, Kincardy (15 recruits), Lucy Coyne and Rebecca Robinson at Nottingham University Hospital NHS Trust (four recruits), Spyros Bakalis at Birmingham Women’s Hospital (three recruits), and Elizabeth Bailey and Angela Bradley at University Hospitals of Coventry and Warwickshire NHS Trust (two recruits); the Chair of the Trial Steering committee, Deirdre Murphy, Dublin; the independent Data and Safety Monitoring Committee for ensuring safe and appropriate trial conduct (Chair: James P Neilson, Liverpool; members: Peter Brocklehurst, National Perinatal Epidemiology Unit, Oxford and Michael Weindling, Liverpool); the senior authors of the other studies included in our meta-analysis, Dwight Rouse and Kypros Nicolaides, for their assistance in obtaining the relevant data; and all the women who participated in this study.

Conflicts of interest

JEN and ST have received grants from government and charitable organisations for research into understanding the mechanism of term and preterm labour and investigating treatments. JEN has acted as a consultant to a small drug company that was considering developing treatments for preterm labour. Additionally, she is named as an inventor on patent applications for two compounds potentially useful in preterm labour prevention. ST has acted as a consultant to the pharmaceutical industry. JPN was chair of the Data Safety and Monitoring Board. All other authors declare that they have no conflicts of interest.

References