Identification of new populations of chicken natural killer (NK) cells

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.dci.2010.02.009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Developmental and Comparative Immunology

Publisher Rights Statement:
Copyright 2010 Elsevier Ltd

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 13. May. 2019
Identification of new populations of chicken natural killer (NK) cells

Christine A. Jansen a,*, Peter M. van de Haar a, Daphne van Haarlem a, Peter van Kooten b, Willem van Eden a, Birgit C. Viertlbock c, Thomas W. Gobel c, Lonneke Vervelede a

a Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
b GD Animal Health Service, Arnsbergstraat 7, 7400 AA Deventer, The Netherlands
c Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University, Veterinarstrasse 13, Munich 80539, Germany

Abstract

Natural killer (NK) cell activity is conserved throughout vertebrate development, but characterization of non-mammalian NK-cells has been hampered by the absence of specific mAbs for these cells.

Monoclonal antibodies were generated against in vitro IL-2 expanded sorted CD3−CD8α+ peripheral blood lymphocytes, previously described to contain chicken NK-cells. Screening of embryonic and adult splenocytes with hybridoma supernatants resulted in five candidate NK markers.

Activation of chicken NK-cells with PMA/ionomycin or with the NK target cell-line LSCC-RP9 resulted in increased expression of CD107 (LAMP-1) and a newly developed flow cytometry based cytotoxicity assay showed that NK-cells were able to kill target cells. Combining NK markers with functional assays indicated that marker positive cells showed NK-cell function.

In conclusion, we generated new monoclonal antibodies and developed two functional assays which will enhance our understanding of the role of NK-cells in healthy and diseased chickens.

1. Introduction

Natural killer (NK) cells play an important role in the early defence against intracellular pathogens like viruses, bacteria and intracellular parasites [1,2]. Initially, NK-cells were thought to kill any cell that did not express major histocompatibility complex (MHC) class I proteins, the so called missing self-hypothesis [3,4]. Now it is widely appreciated that NK-cells express both activating and inhibiting receptors, and that the balance between these signals determines NK-cell activation [2,5]. In addition to their classical role as killers, recently more regulatory functions of NK-cells have been described. Both human and mouse studies suggest that NK-cells may influence the adaptive immune response by the interaction with dendritic cells (DC) or by the production of cytokines [6,7] and a recent study suggests a helper role for NK-cells in eliciting a functional CD8+ T-cell response in the absence of CD4+ T-cell help [8].

In humans, NK-cells have been defined as a population of lymphocytes that lack cell surface expression of CD3 and do express the adhesion molecule CD56 (NCAM) [9,10]. These CD3−CD56+ lymphocytes can be divided into a population of CD56 bright cells, which mainly produce cytokines and chemokines and a CD56 dim subset which has cytotoxic capacity [11]. Since CD56 is not expressed on murine cells, NK-cells in mice were initially defined by the NKR-P1 family member NK1.1 [12] or by the integrin DX5 [13]. Similar to human NK-cells, also in mice different NK cell subsets have been identified. CD27 high NK-cells showed effective cytotoxicity against tumor cell-lines and readily produce IFNγ upon stimulation while CD27 low NK-cells are low or non-responsive under the same conditions [14].

In most farm animals, the definition of NK-cells was difficult due to the lack of specific markers [15]. Cow NK-cells for example were defined as CD3−CD8+ lymphocytes [16] and isolation of these cells was based on markers that are not commonly expressed on NK-cells [17].

Recently, Vivier and colleagues have suggested that NKP46, a member of the highly conserved natural cytotoxicity receptor family (NCR) [18], is able to define NK-cells cross-species [19]. Indeed, this receptor has been described to be specific for NK-cells in humans [20], mice [21], monkeys [22], rats [23] and cattle [24] and may be useful in comparative NK-cell analyses between species.

In contrast to mammalian NK-cells, characteristics of non-mammalian NK-cells are lacking. This is mainly due to the lack of NK-cell-specific monoclonal antibodies. Avian NK-cells have been...
described as a population of cells in the chicken embryonic spleen at a developmental stage where T-cells have not yet migrated to the periphery. These TCR0 cells express surface CD8αα homodimers, but no T- or B-cell-specific antigens and are able to kill the NK-susceptible cell-line LSCC-RP9 [25]. In adult chickens, these avian NK-cells were readily detected in the intestinal epithelial lymphocyte population (IEL) and were used to generate a mAb (28-4). Interestingly, the frequency of avian NK-cells in peripheral tissues was very low, ranging from 0.5% to 1.0% [26]. This is in sharp contrast to NK-cell frequencies in mammals, which have approximately around 10% of NK-cells in blood and spleen.

Based on the differences in NK-cell frequencies between chicken and mammals, one may speculate that chickens simply lack NK-cells in blood and spleen. However, since NK activity in chicken splenocytes has previously been reported [27,28], the absence of chicken NK-cells from other organs than the intestine is not likely. An alternative explanation is that the current markers are not suitable for detection of all chicken NK-cells in blood and spleen.

Interestingly, chicken NK-cells have been reported to express immunoregulatory receptors. These Chicken Ig-like receptors (CHIR) resemble mammalian Ig-like receptors [29] and CHIR genes are located in the chicken genome at a region which was shown to be orthologous to the human leukocyte receptor complex (LRC) [30]. This suggests that chicken NK-cell biology may not be that different from the mammalian NK-cell biology.

Since characterization of chicken NK-cells has been hampered by the lack of specific mAbs, new tools are warranted to study NK-cell biology in the chicken. In this study we set out to identify new markers for chicken NK-cells, which can be used to study the NK-cell frequencies. In parallel, functional assays are essential to confirm that cells which are recognized by NK markers indeed have NK-cell function. Combining markers with functional assays will make it possible to distinguish between presence and functionality of NK-cells in healthy and diseased chickens.

2. Materials and methods

2.1. Animals

One-day-old commercial Lohman Brown chickens were housed in groups and fed ad libitum on commercial feed. Lohman Brown eggs (embryonic day 14) were obtained from a commercial hatchery. Splenectomies were performed on 14-day-old embryos and 4-week-old chickens, and homogenised using a 70 μM cell strainer (Beckton Dickinson (BD), Franklin Lakes, NJ, USA) to obtain a single cell suspension. Viability cells were isolated by Ficoll–Paque density gradient centrifugation. Cells were resuspended in IMDM medium supplemented with 2% heat inactivated FCS; 8% heat inactivated chicken serum, 100 U/ml penicillin/streptomycin and 2 mM glutamine I (‘NK medium’; Gibco BRL, United Kingdom) and were used directly or cryopreserved until the day of analysis. Embryonic splenocytes were used directly or cultured for up to 7 days in ‘NK medium’. Collagenase (Roche Applied Science) and DNase (Roche Applied Science) for 30 min at 37°C, and homogenised using a 70 μM cell strainer. Viable cells were isolated by Ficoll–Paque density gradient centrifugation.

Chickens were housed, handled and treated following approval by the Animal Experimental Committee of the Veterinary Faculty of Utrecht University, The Netherlands. The IBV infection experiment was performed following approval of the Animal Experimental Committee of the GD Animal Health Service, The Netherlands. All experiments were performed in accordance with the Dutch regulation on experimental animals.

2.2. Cell-lines and antibodies

Hybridomas were raised against purified chicken CD3–CD8α+ splenic lymphocytes which were expanded for 2 weeks in the presence of recombinant IL-2 using standard procedures and 48 supernatants were screened. The hybridoma LEP-7 producing the ChCD107 mAb was obtained from the Developmental Studies Hybridoma Bank (DSHB, University of Iowa, IA, United States). The ChCD107 mAb was affinity purified (GammabindPlus, GE Healthcare, Zeist, The Netherlands) from the hybridoma supernatant and biotinylated (p-biotinoyl-ε-aminocaproic acid–N-hydroxysuccinimide ester, Roche Applied Science). Other antibodies used in this study: mouse anti-chicken CD3 (CT3, IgG1), mouse anti-chicken CD8α (CT8, IgG1), mouse anti-chicken CD8β (EP42, IgG2a), mouse anti-chicken CD4 (CT4, IgG1), mouse anti-chicken Bu-1 (AV20, IgG1), mouse anti-chicken γδ-T (TCR1, IgG1), mouse anti-chicken αβ1-T (TCR2, IgG1), mouse anti-chicken αβ2-T (TCR3, IgG1), mouse anti-chicken monocyte/macrophage (KUL01, IgG1), isotype-specific secondary step antibodies goat anti-mouse IgG1, IgG2a and IgG3 (Southern Biotech (SBA), San Diego, CA, USA). Secondary antibodies goat anti-mouse IgG and fluorochrome-labelled streptavidin were obtained from BD.

The chicken B-lymphoblastoid cell-line LSCC-RP9 is commonly used as a chicken target cell-line [32] and was kindly provided by Dr. A. Rebel (CVI, Lelystad, The Netherlands). The chicken B-cell-line 2DB is not a target for chicken NK-cells. All cell-lines were grown in RPMI 1640 supplemented with 10% FCS, 100 U/ml penicillin/streptomycin and 2 mM glutamx I.

2.3. Flow cytometry

Flow cytometry was performed to analyse the expression of candidate NK markers on chicken splenocytes. Cells were stained with hybridoma supernatants (mouse IgG) for 30 min at 4°C, followed by a secondary Ab or isotype-specific antibodies for 20 min 4°C. Normal mouse serum was used to block a-specific binding followed by staining with T-cell, B-cell and macrophage specific mAbs. CD107 expression was analysed by staining with an anti-ChCD107 mAb, followed by a secondary antibody and when adult splenocytes were used staining with anti-ChCD107 was combined with anti-CD3 and anti-CD8α mAbs. At least 50,000 events were acquired using a FACSCalibur flowcytometer (BD) and data were analysed using the software program CELL QUEST (BD) or FlowJO (TreeStar Inc., Ashland, OR, USA).

2.4. CD107 assay

The CD107 assay that has been described to study NK-cell activation in humans [33,34] was adapted for the chicken. Embryonic or adult splenocytes were resuspended in NK medium at a concentration of 1 × 10^6 cells/ml. Cells were stimulated with 100 ng/ml phorbol 12-myristate 13-acetate (PMA) and 500 ng/ml ionomycin (Sigma) in the presence of 1 μl/ml GolgiStop (BD) and anti-ChCD107 mAb during 4 hr at 37°C. 5% CO2. After incubation, cells were washed
in PBS supplemented with 0.5% BSA, stained with a secondary antibody and cell surface markers and flow cytometry was performed. Incubation with anti-ChCD107 or secondary mAbs did not result in a specific staining (data not shown).

2.5. Flow cytometry based cytotoxicity assay

Killing capacity of chicken NK-cells was measured by flow cytometry using the LSCC-RP9 cell-line and the chicken B-cell-line 2D8 as target cells and cultured embryonic splenocytes as effector cells. Target cells were labelled with the fluorescent, cell permeable dye CFSE (5,6-carboxyfluorescein diacetate succinimidyl ester, Molecular Probes, Leiden, The Netherlands) according to the manufacturer’s protocol. Briefly, cells were incubated with CFSE for 8 min, after which labelling was stopped using FCS. Cells were washed in PBS and resuspended in RPMI-10 medium supplemented with 10% FCS, penicillin and streptomycin and glutamax. Splenocytes were washed and resuspended in NK medium. Cells were mixed in different effector:target ratios and incubated for 4 h at 37 °C, 5% CO2. Directly before flow cytometry was performed, propidium iodide (Sigma) was added at a final concentration of 5 ng/ml as well as 10 μl of Flow-Count fluorospheres (Beckman Coulter, Woerden, The Netherlands).

2.6. Statistical analyses

Non-parametric statistical tests were used because the assumption of normally distributed data was not met. Differences between the groups were analysed using Mann–Whitney tests. A p-value <0.05 was considered statistically significant. All statistical analyses were performed using the software program SPSS 12.0 (SPSS Inc., Chicago, IL).

3. Results

3.1. Screening hybridoma supernatants to identify new candidate markers for chicken NK-cells

In order to identify new markers for chicken NK-cells, splenocytes from 14-day-old embryos were isolated and stained ex vivo with supernatants from 47 hybridomas derived against in vitro expanded CD3−CD8α+ splenocytes. Based on staining patterns, four groups of markers could be identified as shown in Fig. 1A. Thirty-six supernatants showed minimal reactivity (mean fluorescent intensity (MFI) 2.6, range 1.9–3.2; group 1). Two supernatants resulted in a clear population of positive cells (MFI 14.9 (8.6–17.4); group 4) and nine supernatants stain positive, but to a variable extent (MFI 4.3 (3.8–4.7); group 2 and MFI 5.9 (5.3–6.6); group 3).

Next, supernatants were used together with anti-CD3 and anti-CD8α mAbs to stain splenocytes from 14-day-old embryos ex vivo and after 7 days of culture. This showed that hybridoma supernatant positive cells were indeed CD3−CD8α+ (Fig. 1B). Furthermore, marker expression changed upon 7 days of culture, as shown in Table 1. Expression of 19 out of 36 markers belonging to group 1 increased, as well as expression of 3 out of 5 (group 2) and 3 out of 4 (group 3). This suggests that different populations of NK-cells may be recognized by these supernatants. These changes in expression were coincided by a decrease in CD8α expression, probably reflecting the activation of chicken splenocytes during culture.

Next, a selection of 12 candidate NK markers representing all groups was further tested on splenocytes from 4-week-old chickens together with the 28-4 mAb. Splenocytes were stained with the hybridoma supernatants in combination with anti-CD3 and anti-CD8α antibodies, and the percentage of marker positive cells in

Fig. 1. Initial screening of 47 hybridoma supernatants results in new candidate NK markers. Forty-seven hybridoma supernatants were screened by flow cytometry using splenocytes from 14-day-old chicken embryos. Based on expression, four groups of candidate NK markers could be identified (A). Within the CD3 negative population, expression of NK markers on CD8α positive cells was analysed and representative stainings for each group as defined in (A) are shown. Staining of embryonic splenocytes directly ex vivo (A and B) or after culture (C) showed that marker positive cells are CD3−CD8α+ and that the expression of CD8α diminished during culture (C).
Table 1
Expression of candidate chicken NK-cell markers on ED14 cells on day 0 and after 7 days of culture.

<table>
<thead>
<tr>
<th>Day 0</th>
<th>Day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Group 2</td>
</tr>
<tr>
<td>14D9</td>
<td>9G6</td>
</tr>
<tr>
<td>7G6</td>
<td>4H3</td>
</tr>
<tr>
<td>15E7</td>
<td>7C1</td>
</tr>
<tr>
<td>2A4</td>
<td>16E7</td>
</tr>
<tr>
<td>9G6</td>
<td>12H3</td>
</tr>
<tr>
<td>4H3</td>
<td>15F8</td>
</tr>
<tr>
<td>6E12</td>
<td>15F8</td>
</tr>
<tr>
<td>Group 2</td>
<td>21E3</td>
</tr>
<tr>
<td>15C7</td>
<td>12D7</td>
</tr>
<tr>
<td>Group 3</td>
<td>1G7</td>
</tr>
<tr>
<td>20E5</td>
<td>3C4</td>
</tr>
<tr>
<td>Group 4</td>
<td>12D6</td>
</tr>
<tr>
<td>6B5</td>
<td></td>
</tr>
</tbody>
</table>

Groups 1, 2, 3 and 4 refer to the grouping that is shown in Fig. 1.

different subsets was analysed. As shown in Fig. 2A and B, the population of CD3−CD8α+ splenocytes (population 1) is small; median 2.0% with a range of 0.7–6.9%. The population of CD3−CD8dim (population 2) cells is much larger; median 9.2% with a range of 5.8–16.8%. When the expression of the candidate NK markers on CD3−CD8α+ cells was analysed (Fig. 2C), differences between the markers were observed. Staining patterns could be divided into two groups, based on frequencies of positive cells. Eight markers stained the major fraction of CD3−CD8α+ cells (median 35.3, range 19.4–46.6), and five markers were expressed on a minority of the CD3−CD8α+ cells (median 4.8, range 1.5–6.2). The 28-4 mAb stained 2.1% of the CD3−CD8α+ cells (range 0.8–5.5%). Similar results were observed for the CD3−CD8dim population and CD3−cells (data not shown). Based on these staining patterns which suggested that markers from different groups may recognize different populations of NK-cells, two markers from group 1 and three markers from group 2 were selected for further analyses.

Fig. 2. Additional screening on adult splenocytes results in a panel of five candidate NK markers. Splenocytes from 4-week-old chickens were stained with anti-CD3 and anti-CD8α mAbs. A representative example is shown (A). Frequencies of CD3−CD8α+ cells (population 1) and CD3−CD8dim splenocytes (population 2) were analysed in 12 4-week-old chickens (B). Co-staining with 12 candidate NK markers (or 28-4, previously described as a marker for intestinal and embryonic NK-cells) and anti-CD3 and anti-CD8α mAbs was performed on splenocytes from 4-week-old chickens. Median expression and interquartile range is shown. Markers that are selected for further study are indicated by a black dot (C).
3.2. **Co-staining of hybridoma supernatants and non-NK markers shows that markers are not exclusive for NK-cells**

To investigate if the candidate NK markers recognize other cell types as well, co-staining with non-NK markers was performed using splenocytes from 4-week-old chickens. NK marker+ cells were selected and within this population frequencies of cellular marker+ and cellular marker− populations were determined (for a representative example see Fig. 3A showing the percentage of γδ+ and γδ− T-cells within the 20E5+ cells). Co-staining with candidate NK markers and anti-TCR αβ1− and anti-TCR αβ2− T-cells. Co-staining with anti-TCR1 antibodies shows that 7C1 and 28-4 are mainly expressed on αβ1− T-cells, while 17B12, 20E5 and 5C7 are expressed in equal amounts on γδ+ and γδ− T-cells. Interestingly, co-staining with anti-CD3 mAbs shows that all candidate NK markers are readily expressed on CD3+ as well as CD3− cells. Co-staining with anti-CD8α mAbs shows differences between the markers: 7C1, 21E3 and 17B12 are predominantly expressed on CD8α+ cells, while the known NK antibody 28-4 is highly expressed on CD8α negative cells. Similar results were observed for staining with anti-CD8β mAb. Co-staining with anti-CD4 mAb shows that the candidate NK markers are predominantly expressed on CD4− cells, except for the known NK marker 28-4. Co-staining with anti-Bu-1 mAb shows that all markers are predominantly expressed on Bu-1− cells. Markers are not expressed on KUL01+ cells. Taken together, differences are observed between the candidate NK markers suggesting that these markers may recognize different populations of NK-cells. Furthermore, co-staining with anti-CD3 mAb will be necessary to distinguish NK-cells from T-cells.
3.3. Activation of chicken NK-cells is determined by the expression of ChCD107

In order to correlate the newly identified NK markers to functional activities, new assays to measure NK-cell functions were developed. NK-cell activation was measured by analysing the expression of ChCD107 (for a representative example see Fig. 4A). Stimulation of splenocytes from 14-day-old embryos with PMA/Ionomycin in the presence of anti-ChCD107 mAb resulted in an increased CD107 expression (unstimulated median 2.1% (range 1.7–5.1%); stimulated median 8.9% (range 4.6–29.1) \(p < 0.05 \), Fig. 4B). Similar results were found for splenocytes from 4-week-old chickens, stimulation resulted in a significant increase in CD107 expression in CD3\(^{-} \) cells (unstimulated median 6.0% (range 3.4–12.6); stimulated median 12.3% (range 3.8–32.4), \(p < 0.05 \), Fig. 4C). Co-incubation of NK-cells with the target cells RP9 also resulted in an increase in CD107 expression in CD3\(^{-} \) cells from 14-day-old embryos and 1-week-old chickens (Fig. 4D).

In addition, killing capacity of chicken NK-cells was analysed using a flow cytometry based cytotoxicity assay. Fig. 5A shows killing of the target cell-line RP9 by embryonic splenocytes. This killing is specific for the known chicken target cell-line RP9, because another chicken B-cell-line 2D8 is not killed by these splenocytes (Fig. 5B). Taken together, two assays have been developed that can be used to measure the function of embryonic and chicken NK-cells.

3.4. Combining candidate NK markers with functional assays shows that markers recognize cells with NK function

To investigate if the newly identified NK markers recognize cells which have NK function, staining with NK markers was combined with the measurement of CD107 expression (Fig. 6). In three out of five tested (7C1, 21E3 and 17B12), increased CD107 expression was observed within the marker positive subset upon PMA/Ionomycin stimulation, suggesting that these markers recognize functional chicken NK-cells. Interestingly, two markers with
Fig. 5. Flow cytometry based cytotoxicity assay shows killing of target cell-line RP9 by chicken NK-cells. (A) Cytotoxic capacity of cultured ED14 splenocytes was analysed using a flow cytometry based killing assay. The NK target cell-line LSCC-RP-9 was labelled with CFSE and incubated with effector cells at various E:T ratios. After 4h, the percentage of live cells was analysed using propidium iodide exclusion. (B) Lack of killing of the chicken B-cell-line 2D8 as target showed that killing of the known NK target B-cell-line LSCC-RP9 was specific. (C) All experiments were performed in triplicate and results from four experiments are shown.

Fig. 6. Co-staining with candidate NK markers and ChCD107 shows that markers recognize cells with NK function. Stimulated splenocytes from 4-week-old chickens were stained with a ChCD107 mAb and a panel of candidate NK markers, as well as 28-4 and expression was analysed by flow cytometry. Three markers (7C1, 21E3 and 17B12) showed increased CD107 expression in marker positive cells upon stimulation. Median expression and interquartile range are shown for four chickens. In grey unstimulated cells, in black stimulated cells.

Taken together, we identified five new candidate NK markers that recognize chicken NK-cells.

3.5. Increased NK-cell activation in lungs of IBV infected chickens

Next, we investigated if the newly developed CD107 assay could be applied to healthy and virus infected birds. To this end, chickens were infected with IBV, lung cells were isolated and CD107 expression was analysed directly ex vivo without restimulation as shown in Fig. 7. CD107 expression was significantly higher in CD3−CD8α− cells from IBV infected chickens compared to uninfected chickens (infected median 20.8% (range 14.8–24.6%); uninfected median 7% (range 4.7–11%), p < 0.05). Interestingly, no differences in CD107 expression were observed in the CD3−CD8α+ cells (infected median 7.3% (range 5.3–9.7%); uninfected median 6.8% (range 5.5–11.2%)). Thus, ex vivo analysis of CD107 expression showed enhanced expression on lung cells from IBV infected chickens, reflecting increased NK-cell activation.

4. Discussion

Characterization of non-mammalian NK-cells has been hampered by the absence of specific mAbs for these cells. Until now, avian NK-cells have been described as a population of cells that express the CD8α homodimer but lack surface CD3 and Ig [25] and only one NK-cell-specific mAb, 28-4 has been described [26]. Cells with these characteristics have mainly been found in embryonic spleen and the intestinal epithelium of chickens. In contrast, the frequencies of these CD3−CD8α+ avian NK-cells in blood and spleen was very low, ranging from 0.5% to 1% rather than the 10%
observed in many mammals. This implicates that NK-cells are rarely present outside the gut or more likely that the current markers are not appropriate for the detection of NK-cells in blood and spleen of chickens. Therefore, we set out to identify new markers for chicken NK-cells. Splenocytes from 14-day-old embryos were isolated and stained with supernatants from 47 hybridomas generated against in vitro expanded CD3−CD8α+ splenocytes and based on staining patterns four different groups of markers could be identified. Next, staining of the supernatants in the presence of anti-CD3 and anti-CD8α mAbs on splenocytes from 14-day-old embryos confirmed that the positive cells were indeed CD3−CD8α+, which fits earlier observations [34]. Culturing the cells for 7 days with conditioned medium showed changes in expression of the different NK markers and a decrease in CD8α expression. This decrease in CD8α expression may reflect activation of the cells, similar to loss of CD3 expression upon stimulation.

It is tempting to speculate that the differences in expression upon culture are due to the existence of different populations of NK-cells which develop during culture. Staining spleenocytes from healthy 4-week-old chickens with a panel of 12 candidate NK markers and the 28-4 mAb resulted in two different groups based on staining patterns within the CD3−CD8α+ population. Interestingly, while in the spleen the population of CD3−CD8α+ cells is rather small (median 2.0%; range (0.7−6.9%)), the population of CD3−CD8αdim cells is much bigger (median 9.2%; range (5.8−16.8%)). As activation of embryonic spleenocytes resulted in a decrease in CD8α expression, these CD3−CD8αdim cells may very well represent a population of activated NK-cells. This is supported by the similar staining patterns of the candidate NK markers for the CD3−CD8α+ and CD3−CD8αdim population. Furthermore, the total frequency of CD3−CD8αdim and CD3−CD8α+ cells is similar to the frequencies of NK-cells observed in mammals and CD107 is predominantly expressed in CD8αdim cells (data not shown).

Co-staining with non-NK markers suggests that the candidate NK markers recognize different populations. Most markers also recognize CD8α negative cells. As we observed down regulation of CD8α expression upon activation, this suggests that some of these markers may recognize activated NK-cells. Furthermore, staining with the NK markers needs to be combined with staining with anti-CD3 mAbs, similar to the human situation in which the NK marker CD56 is also expressed on T-cells [35]. Some markers may also recognize γδ T-cells (21E3, 17B12, 20E5 and SC7). In mammals, almost all NK-cell receptors have been found to be expressed by αβ or γδ T-cells [36]. Also bovine γδ T-cells that have been stimulated with IL-15 express the NK-cell receptor NKP46 [37]. Chickens have up to 50% γδ T-cells in blood and spleen [38], and a mAb against a NK receptor from the C-type lectin family (B-NK) recognizes embryonic ED14 spleenocytes as well as subsets of splenic αβ and γδ T-cells [39]. This implies that markers for NK-cells may recognize γδ T-cells as well as NK-cells which show that our data showing that the candidate NK markers are also readily expressed on TCR+ cells.

The function of chicken NK-cells was determined by analysing the expression of CD107 (LAMP-1) which is expressed on the surface of NK-cells upon activation. The expression of CD107 has previously been shown to correlate cytotoxicity and IFNγ production [34] and is commonly used as an assay to measure activation of mammalian NK-cells [34, 40]. CD107 expression was found upon stimulation with PMA/Ionomycin and upon stimulation with the target cell-line LSCC-RP9, showing that activation of chicken NK-cells can be measured in vitro.

In addition, a flow cytometry based cytotoxicity assay showed killing of the target cell-line LSCC-RP9 by cultured ED14 embryonic spleenocytes and CD3−CD4-depleted lung cells. Flow cytometry based cytotoxicity assays have previously been shown to correlate well with the standard 51 Chromium release assay [41, 42]. Furthermore, the advantage of a flow cytometry based assay is that this assay is not radioactive and multi-color flow cytometry allows the analysis of cell-specific parameters.

Based on the screening of embryonic and adult splenocytes, staining of five candidate NK markers and the 28-4 mAb was combined with the measurement of CD107 expression. Three markers (7C1, 21E3 and 17B12) showed increased CD107 expression within the marker positive subset upon PMA/Ionomycin stimulation, suggesting that these markers recognize chicken NK-cells. Interestingly, 20E5 and SC7, two markers with the highest expression based on Fig. 2C do not show an increase in CD107 expression in marker positive cells upon stimulation. This confirms the earlier observation that these markers may be expressed to some extent on NK-cells, but are readily expressed by other cells as well. Furthermore, 28-4+ cells in spleen do not show NK-cell function. Interestingly, 28-4+ IEL have been reported to induce lysis of NK-sensitive targets [26]. This suggests that 28-4+ IEL are different from 28-4+ splenocytes which are studied here.

Analysis of CD107 expression in lung cells from IBV infected chickens showed increased CD107 expression compared to lung cells from uninfected chickens. Interestingly, this difference was only observed for CD3−CD8α− cells, which again suggests that activation of chicken NK-cells is paralleled by down regulation of CD8α. These data show for the first time that the ChCD107 assay can be readily used to study chicken NK-cell activation ex vivo. Therefore, this assay is a valuable tool to study NK-cell biology in healthy and diseased chickens.

In conclusion, we identified five new markers (7C1, 21E3, 17B12, 20E5 and SC7) that recognize chicken NK-cells and developed two assays to measure NK-cell activation and cytotoxicity. Although the antigens that are recognized by the different markers are not yet known, the experiments performed in this study suggest that the markers may recognize different populations of NK-cells. It is possible that the frequencies of NK-cells recognized by the different markers may vary between different organs, similar to the results with the 28-4 mAb. These results will lead to a better understanding of NK-cell frequencies and distribution in healthy and diseased chickens.

Acknowledgements

This study was financially supported by the EU sixth framework program Flupath (grant 044220) and Program "Impulse Veterinary Avian Influenza Research in The Netherlands", Dutch Ministry of Agriculture, Nature and Food Quality. T.W.G. was supported by BFG grant GO489/5-1.

References

