The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth

Citation for published version:

Digital Object Identifier (DOI):
10.1128/JB.01570-07

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Bacteriology

Publisher Rights Statement:
© 2008, American Society for Microbiology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Intracellular Pathogen *Rhodococcus equi* Produces a Catecholate Siderophore Required for Saprophytic Growth

Raúl Miranda-CasoLuengo, John F. Prescott, José A. Vázquez-Boland and Wim G. Meijer

Updated information and services can be found at: http://jb.asm.org/content/190/5/1631

These include:

REFERENCES

This article cites 47 articles, 24 of which can be accessed free at: http://jb.asm.org/content/190/5/1631#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
The Intracellular Pathogen *Rhodococcus equi* Produces a Catecholate Siderophore Required for Saprophytic Growth

Raúl Miranda-CasoLuengo,¹* John F. Prescott,² José A. Vázquez-Boland,³ and Wim G. Meijer¹

School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland; Pathobiology, University of Guelph, Guelph, Ontario, Canada; and Veterinary Molecular Microbiology Section, Faculty of Medical and Veterinary Sciences, Veterinary School, University of Bristol, Langford, United Kingdom

Received 28 September 2007/Accepted 14 December 2007

Little is known about the iron acquisition systems of the soilborne facultative intracellular pathogen *Rhodococcus equi*. We previously reported that expression of *iupABC*, encoding a putative siderophore ABC transporter system, is iron regulated and required for growth at low iron concentrations. Here we show that disruption of *iupA* leads to the concomitant accumulation of catecholates and a chromophore with absorption maxima at 341 and 528 nm during growth under iron-replete conditions. In contrast, the wild-type strain produces these compounds only in iron-depleted medium. Disruption of *iupU* and *iupS*, encoding nonribosomal peptide synthetases, prevented growth of the corresponding *R. equi* SID1 and SID3 mutants at low iron concentrations. However, only *R. equi* SID3 did not produce the chromophore produced by the wild-type strain during growth at low iron concentrations. The phenotype of *R. equi* SID3, but not that of *R. equi* SID1, could be rescued by coculture with the wild type, allowing growth at low iron concentrations. This strongly suggests that the product of the *iupS* gene is responsible for the synthesis of a diffusible compound required for growth at low iron concentrations. Transcription of *iupU* was constitutive, but that of *iupS* was iron regulated, with an induction of 3 orders of magnitude during growth in iron-depleted compared to iron-replete medium. Neither mutant was attenuated in vivo in a mouse infection model, indicating that the *iupU*- and *iupS*-encoded iron acquisition systems are primarily involved in iron uptake during saprophytic life.

The actinomycete *Rhodococcus equi* is a facultative intracellular pathogen that infects alveolar macrophages of young foals, causing pyogranulomatous lung lesions. In addition, *R. equi* is an opportunistic pathogen of immunocompromised humans, in particular of individuals diagnosed with AIDS, and sporadically infects other animals (27, 30). *R. equi* strains isolated from foals invariably harbor an 80- to 90-kb plasmid carrying a family of seven virulence-associated protein-encoding *vap* genes and two pseudo-*vap* genes within a 27-kb pathogenicity island (5, 33, 36, 40). The virulence plasmid is required for proliferation and cytotoxicity of *R. equi* in macrophages. However, to date only VapA has been shown to be essential, although not sufficient, for virulence (18, 24). In addition to having this pathogenic lifestyle, *R. equi* is also a versatile saprophytic bacterium, capable of rapid growth in soil and manure (17).

Iron is essential for most forms of life, due to its involvement in many major biological processes as a biocatalyst and electron carrier. Although Fe²⁺ is soluble (0.1 M at pH 7), in the presence of oxygen Fe²⁺ is readily oxidized to the highly insoluble Fe³⁺ (10⁻¹⁸ M at pH 7) (1). Iron is therefore growth limiting in most environments. To satisfy their iron requirements, many bacteria secrete low-molecular-weight iron-chelating compounds, generically known as siderophores, characterized by an extremely high affinity for Fe³⁺ (46). The three main types of siderophores contain catecholates, hydroxamates, or carboxylates as iron-coordinating functionalities; however, mixed siderophores and siderophores containing other functional groups such as diphenolates, imidazoles, and thiazolines have also been found (8). Following chelation of Fe³⁺ in the medium, siderophores are taken up by their cognate ABC transport systems, and Fe³⁺ release subsequently occurs either by reduction of Fe³⁺ to Fe²⁺ or by hydrolysis of the siderophore (22, 23, 28).

Pathogenic bacteria such as *R. equi* face a greater challenge because the iron concentration in the host’s fluids and tissues is further lowered through binding to proteins such as hemoglobin, transferrin, lactoferrin, and ferritin (46). *R. equi* can acquire iron from holo-transferrin, iron-saturated lactoferrin, hemin, and hemoglobin, albeit with low efficiency (19, 29). To date, siderophores have not been detected in *R. equi* (12, 16). However, a mutant unable to grow at low iron concentrations contained an insertion in the *iupABC* operon encoding an ABC transport system similar to siderophore transporters, suggesting that *R. equi* produces at least one siderophore (29). The only rhodococcal siderophores characterized to date are heterobactins and rhodobactin from the nonpathogenic *Rhodococcus erythropolis* and *Rhodococcus rhodochrous*, respectively, containing catecholate and hydroxamate functionalities as iron-coordinating groups (6, 10). However, the genes encoding the enzymatic machinery for their biosynthesis remain unknown.

This paper describes the presence of an *R. equi* siderophore containing catecholate moieties, which is likely to be transported by the previously identified *iupABC* transport system (29). Knockout mutagenesis allowed the identification of a gene cluster encoding the nonribosomal peptide synthetase (NRPS) required for its biosynthesis. Virulence assays showed...
that this siderophore is required for the saprophytic growth of \textit{R. equi}. The resulting mutant was not attenuated for virulence, suggesting that \textit{R. equi} must possess at least one additional system to acquire iron in the host. Since this mutant was unable to grow under low-iron conditions, this siderophore biosynthesis system seems to be required primarily for saprophytic growth.

MATERIALS AND METHODS

Bacterial strains, plasmids, and oligonucleotides. The bacterial strains, plasmids, and oligonucleotides used in this study are listed in Table 1.

Media and growth conditions. \textit{Escherichia coli} and \textit{R. equi} were grown on Luria-Bertani (LB) medium (37°C) or on minimal medium supplemented with 20 mM lactate (LMM) at 37°C as previously described (20). To control the availability of iron in liquid media, LMM was extracted in batch with Chelex-100 ion exchanger resin following the manufacturer’s recommendations (Bio-Rad) and supplemented with 30 μM thiamine and Vishniac-Santer trace metal solution (43) for iron-replete conditions (LMM) or with the same solution but lacking FeSO₄ for low-iron conditions (LMM-Fe). All cultures were performed in polycarbonate flasks thoroughly rinsed with Chelex-100-treated water. The iron content of media was determined by atomic absorption spectroscopy in a SpectrAA-10 instrument (Varian Inc.) using an Fe₃⁺ solution as a standard. To study the secretion of iron-chelating compounds and examine the effect of iron availability on transcription of selected genes, \textit{R. equi} was inoculated at an optical density at 600 nm (OD 600) of 0.05 and pregrown on LMM until the culture reached an OD 600 of 0.6. At this point, cells were harvested, washed twice with Chelex-100-treated phosphate-buffered saline, and re inoculated in a fresh 50 ml of LMM or LMM-Fe at an OD 600 of 0.05. The sensitivity of \textit{R. equi} mutants to low-iron conditions was assessed by growth inhibition assays on LB agar containing 2,2'-dipyridyl. Growth inhibition was recorded as the

TABLE 1. Bacterial strains, plasmids, and oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Strains, plasmid, or oligonucleotide</th>
<th>Genotype, characteristics, or sequence</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{E. coli} DH5α</td>
<td>Cloning host strain; supE44 ΔlacU169 (Δ80lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1</td>
<td>Bethesda Research Laboratories</td>
</tr>
<tr>
<td>\textit{R. equi} strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 33701</td>
<td>Virulent strain, 81-kb virulence plasmid p33701</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ATCC 33701 P⁺</td>
<td>Avirulent strain, virulence plasmid cured</td>
<td>41</td>
</tr>
<tr>
<td>α5</td>
<td>αupA::(EZ::TN Kan2), derivative of ATCC 33701</td>
<td>29</td>
</tr>
<tr>
<td>SID1</td>
<td>αupU::pSID1K, derivative of ATCC 33701</td>
<td>This study</td>
</tr>
<tr>
<td>SID3</td>
<td>αupU::pSID3K, derivative of ATCC 33701</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAm1</td>
<td>Ap⁺, oriV(CoIE1), 2,427 bp</td>
<td>25</td>
</tr>
<tr>
<td>pSID1K</td>
<td>Suicide plasmid containing sid1 PCR product cloned into the NcoI site of pAm1, 3,238 bp</td>
<td>This study</td>
</tr>
<tr>
<td>pSID3K</td>
<td>Suicide plasmid containing sid3 PCR product cloned into the NcoI site of pAm1, 3,326 bp</td>
<td>This study</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApraF</td>
<td>5'-ACCGACTGACCTTCCCTTCT</td>
<td>This study</td>
</tr>
<tr>
<td>ApraR</td>
<td>5'-TCGGTCAGCTTCCATCAAC</td>
<td>This study</td>
</tr>
<tr>
<td>Primers for cloning(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID1-KF</td>
<td>5'-CAATCTACATTGATACGACGTAGTGCAGTC</td>
<td>This study</td>
</tr>
<tr>
<td>SID1-KR</td>
<td>5'-CATGCTACATTGTTGGTGAAGTGTACCGAG</td>
<td>This study</td>
</tr>
<tr>
<td>SID3-KF</td>
<td>5'-TCTGGACATTTGATAGACATGGTCGTCGACTG</td>
<td>This study</td>
</tr>
<tr>
<td>SID3-KR</td>
<td>5'-GATGCAACATGTACTGTCGAGCCACCAGGAC</td>
<td>This study</td>
</tr>
<tr>
<td>External primers(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID1-1032EF</td>
<td>5'-GGTCCAGGTGATCGTTCC</td>
<td>This study</td>
</tr>
<tr>
<td>SID1-1032ER</td>
<td>5'-AACAGGGTGCCGGTGCGTAG</td>
<td>This study</td>
</tr>
<tr>
<td>SID3-1060EF</td>
<td>5'-ATGTTCACTGCTCTCGACAC</td>
<td>This study</td>
</tr>
<tr>
<td>SID3-1060ER</td>
<td>5'-ATCCGGAGGTGAGATGAGC</td>
<td>This study</td>
</tr>
<tr>
<td>Primers for real-time PCR(^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID1-220F</td>
<td>5'-CCTCCCTATTCCTCGTGGAACA</td>
<td>This study</td>
</tr>
<tr>
<td>SID1-220R</td>
<td>5'-CCTCCCTCGTACGGTACACA</td>
<td>This study</td>
</tr>
<tr>
<td>SID3-205F</td>
<td>5'-TGGGATTTCCACACCTCTG</td>
<td>This study</td>
</tr>
<tr>
<td>SID3-205R</td>
<td>5'-CGAGGCTAGCTGGTCCAGA</td>
<td>This study</td>
</tr>
<tr>
<td>SID4-193F</td>
<td>5'-GGGGCTGCACTACCTCAGTA</td>
<td>This study</td>
</tr>
<tr>
<td>SID4-193R</td>
<td>5'-CTTACGGCAGACGGGAACAC</td>
<td>This study</td>
</tr>
<tr>
<td>16SrRNA200F</td>
<td>5'-ACGAGGCGGAGGATGACGCTGTA</td>
<td>29</td>
</tr>
<tr>
<td>16SrRNA200R</td>
<td>5'-ACTCAAGTGTCGCCGTATCG</td>
<td>29</td>
</tr>
</tbody>
</table>

\(^a\) Primers used to produce PCR fragments to clone into the NcoI site of pAm1. NcoI-compatible PciI sites were added (bold). Underlining indicates ●●●●.

\(^b\) External primers were used in combination with ApraF and ApraR primers to check the knockout.

\(^c\) Primers used for real-time PCR.
inability of the bacteria to develop isolated colonies after 3 days of incubation at 37°C. When appropriate, the following supplements were added: ampicillin, 50 μg ml⁻¹; apramycin, 30 μg ml⁻¹ (E. coli) or 80 μg ml⁻¹ (R. equi); kanamycin, 50 μg ml⁻¹ (E. coli) or 200 μg ml⁻¹ (R. equi); X-Gal (5-chromo-4-chloro-3-indolyl-β-D-galactopyranosidase), 20 μg ml⁻¹; and 0.1 M isopropyl-β-D-thiogalactoside (IPTG). Agar was added for solid media (1.5% wt/vol).

DNA manipulations. Plasmid DNA was isolated with the alkaline lysis method (3) or by using the Wizard Plus SV miniprep system (Promega). Chromosomal DNA was isolated as described previously (31). DNA-modifying enzymes were used according to the manufacturer’s recommendations (New England Biolabs).

Construction of disruption mutants. Mutants were constructed by homologous recombination as described elsewhere (45). PCR fragments containing an internal fragment were produced with GoTaq Flexi DNA polymerase (Promega), gel purified (Promega), and cloned into the single NcoI site of the pAP1 suicide vector (31). Design of primers (Table 1) included the addition of sites for the NcoI-compatible PciI restriction endonuclease. To avoid expression of shorter but potentially functional products of these genes, two stop codons (TGATAAG) were added in frame at the beginning of forward primers. After transformation of electrocompetent cells of R. equi, knockout mutants were selected on apramycin-LB agar plates and subsequently confirmed by colony PCR using internal primers against the apramycin cassette and external gene-specific primers (Table 1). Mutants were assayed for their sensitivity to low doses of 2,2'-dipiridyl as described above. A revertant was obtained by growing R. equi mutants in the absence of apramycin. Resulting apramycin-sensitive revertants were tested for growth in the presence of 100 μM 2,2'-dipiridyl. The absence of the disruption plasmid in the genomes of the revertants was determined by PCR.

Production and analysis of iron-chelating compounds. R. equi was grown in LMM and LMM-Fe; aliquots (1 ml) were centrifuged at 20,000 × g at 4°C for 10 min, followed by filtration of the resulting supernatant through 0.22-μm membrane filters (Millipore). Spectra (300 to 700 nm) of supernatants were obtained in a double-beam Varian spectrophotometer (Varian Inc.). The formation of iron complexes was detected after addition of Fe³⁺ to the supernatants of R. equi and mutant strains. Spectra of samples obtained from high-iron conditions of growth were subtracted from those of samples obtained under iron-limited conditions. Catecholate-containing compounds were assayed with Ajarow’s nitrite-molybdate reagent (2), and 2,3-dihydroxybenzoic acid was used as a standard.

Real-time PCR. Total RNA was isolated from R. equi as previously described (29). cDNA was produced by extension of hexameric random primers with Impron II reverse transcriptase, using 100 ng of RNA and following the manufacturer’s (Promega) instructions. Real-time PCR to quantify the number of transcripts was performed in a LightCycler (Roche) using the QuantiTect SYBR green PCR kit following the manufacturer’s (Qiagen) recommendations. Melting curves were determined at the end of 45 amplification cycles to ensure specificity of the fluorescence signal. Standard curves for known amounts of template DNA were determined in the range of 10⁻² to 10⁻¹ molecules.

Virulence assays. The effect of mutation of the iupS and iupU genes on the virulence of R. equi was assayed in the mouse model as previously described (14).

RESULTS

Growth of R. equi under low-iron condition. We previously characterized R. equi α5, a mutant unable to grow in the presence of low (80 μM) concentrations of the iron chelator 2,2'-dipyridyl due to disruption of a putative siderophore ABC transport system (29). In order to study growth of R. equi α5 and the wild type at low iron concentrations in the absence of iron-chelating agents, the medium was treated with Chelex-100. The iron concentration in iron-replete medium (LMM) was determined as 3.7 ± 0.28 μM (n = 4), whereas the iron concentration in LMM-Fe medium was below the assay’s detection limit (0.6 μM).

The growth rate of the wild-type strain in LMM-Fe medium was significantly lower than when the strain was grown in iron-replete LMM medium. However, despite the lower growth rate, the final OD of the culture grown in LMM-Fe medium was approximately the same as that obtained in LMM medium (Fig. 1). Growth of R. equi α5 was indistinguishable from that of the wild-type strain when grown in iron-replete medium; however, both the growth rate and final OD of R. equi α5 were lower than those of the wild-type strain when grown in LMM-Fe medium (Fig. 1). These data were consistent with the ABC transport system, absent in the R. equi α5 mutant, being involved in the acquisition of iron by R. equi.

R. equi produces a chromophore during growth at low iron concentrations. A reddish color developed during growth of R. equi α5, but not during growth of the wild-type strain, in iron-replete medium (data not shown). Since R. equi α5 carries a transposome insertion in iupABC, encoding a siderophore uptake system, we speculated that the red color of the medium supernatant was due to the formation of an Fe³⁺-siderophore complex, with iron being derived from the Vishniac trace element solution. If so, the absence of a red color in the supernatants of the R. equi α5 and wild-type strains following growth in LMM-Fe medium was due to the extremely low concentration of iron. To test this hypothesis, Vishniac trace element solution, in LMM-Fe medium, the formation of a red color (data not shown). This chromophore was not observed when supernatant of the wild-type strain grown in LMM medium was used or when Vishniac trace element solution lacking FeSO₄ was added instead.

Spectroscopic analysis of the culture supernatants of R. equi α5 and the wild-type strain following growth in LMM-Fe showed an absorption peak at 341 nm (Fig. 2A). Addition of 36 μM Fe³⁺ to these supernatants resulted in the formation of a second, broad absorption peak with an absorption maximum at 528 nm (Fig. 2A). In contrast, following growth in iron-replete medium neither absorption peak was observed in culture supernatants of the wild-type strain (Fig. 2A), whereas both were present in the culture supernatant of R. equi α5 (data not shown). The chromophore(s) started to accumulate during the early exponential growth phase and continued to accumulate in the stationary phase during growth of R. equi in LMM-Fe but not in LMM medium (Fig. 1).

The absorption spectra of the supernatants of R. equi grown in LMM-Fe medium are similar to that of catecholate-containing siderophores (39). Therefore, the presence of catecholates in culture supernatants of R. equi α5 and wild-type strains
grown on LMM and LMM-Fe medium was determined. The catecholate content of *R. equi* wild-type supernatants was 18-fold higher following growth in LMM medium than following growth in LMM-Fe medium. In contrast, the *R. equi* α5 strain produced catecholates in both media to the same level as the wild-type strain grown in iron-deplete medium (Fig. 2B).

Identification of putative siderophore biosynthesis genes. The above data strongly suggested that *R. equi* produces a catecholate-containing siderophore during growth in low-iron medium. Catecholate-containing siderophores are generally produced by NRPSs. Analysis of the *R. equi* genome (http://www.sanger.ac.uk/Projects/R_equi/) revealed seven NRPS-encoding gene clusters, two of which were considered most likely to be involved in producing the putative siderophore described above (Fig. 3). The *iupU* gene (nucleotides [nt] 2506417 to 2533221), encoding a protein of 960.3 kDa containing seven NRPS modules, is located 28 kb upstream of *iupABC*, encoding a siderophore uptake system (29). The close proximity to *iupABC* and the linkage with *mbtH*, a gene required for production or secretion of siderophores and frequently clustered with siderophore biosynthesis genes (11, 47), indicated that the *iupU* gene could be involved in siderophore biosynthesis.

The second cluster (nt 851218 to 876561), of 25 kb, contains 10 genes apparently organized into two divergently transcribed operons. A six-cistron operon (nt 855052 to 876561) harbors two large genes encoding proteins of 271.5 and 324.6 kDa with two NRPS modules each (respectively, *iupS* [nt 855052 to 862794] and *iupT* [nt 864015 to 873179]). The remaining four genes are homologous to genes encoding siderophore biosynthetic and transport systems. Upstream and transcribed divergently from this operon is a four-cistron operon (nt 854874 to 850568) encoding homologues of DnbBEAC enzymes required for the production of the catecholate siderophore bacillibactin (26), suggesting that *iupS* and *iupT* may be involved in the biosynthesis of a catecholate siderophore.

Transcription of *iupS* and *iupT*, but not *iupU*, is regulated by iron. Transcription of genes involved in siderophore biosynthesis, secretion, and uptake is usually regulated by the iron concentration of the growth medium, as shown previously for *iupABC* in *R. equi* (29). The copy number of the *iupS* and *iupT* transcripts was increased by 3 orders of magnitude during growth in LMM-Fe compared to LMM medium. In contrast, transcription of *iupU* was constitutively high and not regulated by iron; *iupU* transcript levels at low and high iron concentrations were comparable to those of *iupS* and *iupT* during growth at low iron concentrations (Fig. 4).

The *R. equi* SID3 mutant fails to produce a diffusible compound required for growth at low iron concentrations. To determine whether *iupS*, *iupT*, and *iupU* play a role in iron metabolism of *R. equi*, mutants were generated by integrating a small plasmid (pAm1) conferring apramycin resistance and harboring an internal fragment of either *iupS*, *iupT*, or *iupU* into the genome via homologous recombination as described previously (29). The *iupS* and *iupU* mutants were readily obtained and subsequently validated by PCR and Southern hybridization, resulting in, respectively, *R. equi* SID3 and *R. equi* SID1 (data not shown). However, despite repeated attempts, we were unable to generate an *iupT* disruption mutant. The *R. equi* SID1 and SID3 strains were unable to grow at relatively

FIG. 2. Supernatants of *R. equi* following growth in iron-replete (LMM) and iron-depleted (LMM-Fe) media. (A) Absorption spectra of the supernatant of *R. equi* following growth in iron-depleted medium. Without addition of FeSO₄ to the supernatant, an absorption peak at 341 nm is present (−Fe spectrum); addition of 36 μM FeSO₄ to the supernatant gives raise to a second absorption peak at 528 nm (+Fe spectrum, indicated by an arrow). r, absorption spectrum of the supernatant of *R. equi* following growth in iron-replete medium; 36 μM FeSO₄ was added to the supernatant. The spectra shown are the result of subtracting the spectrum of the LMM growth medium from that of the LMM-Fe medium. (B) Presence of catecholates in the supernatant of *R. equi* following growth in iron-replete medium; WT, *R. equi* wild-type strain grown in LMM; WT-Fe, *R. equi* wild-type strain grown in LMM-Fe; α5, *R. equi* α5 grown in LMM; α5-Fe, *R. equi* α5 grown in LMM-Fe.

FIG. 3. Genetic context of the *iupU* (located at nt 2506417 to 2533221), *iupS* (located at nt 855052 to 862794), and *iupT* (located at nt 864015 to 873179) genes. The coordinates refer to the genomic sequence of *R. equi*. The position of the gene disruption (D) is indicated by an arrow.

FIG. 4. Absolute quantification of *iupU*, *iupS*, and *iupT* mRNAs and 16S rRNA using RNA isolated from *R. equi* grown under iron-replete (black bars) or iron-depleted (gray bars) conditions. Shown are the averages and standard deviations from two independent experiments in which each sample was analyzed in duplicate.
low concentrations of 2,2'-dipyridyl, a phenotype similar to that of *R. equi* α5 (Fig. 5). This phenotype was not due to an increased sensitivity of the mutant strains to 2,2'-dipyridyl, since addition of FeCl₃ allowed growth to resume.

If the inability of *R. equi* SID1 and *R. equi* SID3 to grow under low-iron conditions is due to their inability to produce a diffusible iron-chelating compound, then the wild-type strain which does produce this compound should be able to cross-feed the mutants. To test this possibility, *R. equi* SID1 and SID3, as well as *R. equi* α5 (*iupA* disruption mutant), were streaked in a zigzag pattern on LB agar plates containing 2,2'-dipyridyl at a concentration inhibitory for the mutants but not the wild-type strain. The *R. equi* wild-type strain was subsequently streaked across that of the mutant strains. Cross-feeding was recorded after incubation of the plates at 37°C for 3 days.

The only rhodococcal siderophores that have been characterized to date are heterobactins and rhodobactin which are produced by *Rhodococcus erythropolis* and *Rhodococcus rhodochrous*, respectively. Both siderophores are mixed-ligand siderophores containing hydroxamate and catecholate moieties (6, 10). Spectroscopic analysis of the culture supernatant suggested that the chromophore produced by *R. equi* contains a catecholate moiety. The catecholate moiety of these siderophores, 2,3-dihydroxybenzoate, displays an absorption peak at 315 nm that arises from the π→π⁺ transition of catechols. Deviation in the wavelength at which maximum absorption occurs has been observed, depending on metal complexation and on the arrangement of hydroxyl groups on the benzene ring of dihydroxybenzoate (21). Upon addition of Fe³⁺, an absorption peak at 528 nm appeared, which may arise from the ligand-to-metal charge transfer band observed when catecholates bind Fe³⁺. This absorption peak therefore probably

FIG. 5. Growth inhibition by the iron chelator 2,2'-dipyridyl and cross-feeding of the *R. equi* mutants by diffusible compounds secreted by the wild-type strain. Growth of *R. equi* α5, SID1, and SID3 on agar plates containing 0 (row 1) or 160 μM (row 2) 2,2'-dipyridyl is shown. The top half of each panel represents the *R. equi* wild-type strain, whereas the *R. equi* mutant strains are shown in the bottom half of each panel. Row 3, cross-feeding of *R. equi* α5, SID1, and SID3 by the wild-type strain. *R. equi* mutants were zigzag-streaked on LB agar plates containing 160 μM of 2,2'-dipyridyl, a concentration completely inhibiting growth of the mutants. A single streak of wild-type *R. equi* was made across that of the mutant strains. Cross-feeding was recorded after incubation of the plates at 37°C for 3 days.

DISCUSSION

Although it has been reported that *R. equi* requires iron for growth (19), little information is available regarding the mechanisms that this pathogen employs to meet its iron demands in either saprophytic or pathogenic growth conditions. The data presented in this paper provide evidence that the *iupS* gene, encoding an NRPS, is required for the production of a siderophore.

The *iupS* gene is the first gene of what, based on the very small intergenic regions, appears to be a six-cistron 21-kb operon, flanked by divergently transcribed genes. Disruption of *iupS* rendered the resulting mutant unable to grow in the presence of low concentrations of 2,2-dipyridyl and, in addition, dramatically reduced the growth rate in media containing extremely low iron concentrations. This phenotype could be rescued by coculture with the wild-type strain, showing that *R. equi* SID3 is unable to produce a diffusible compound required for growth at low iron concentrations. This conclusion was further supported by the observation that the wild-type strain produces a chromophore during growth in iron-depleted, but not iron-replete, medium. This chromophore is characterized by an absorption maximum at 341 nm and upon the addition of iron a second broad peak with an absorption maximum at 528 nm, leading to the formation of a reddish color. The synthesis of the chromophore and transcription of *iupS* are both regulated by the concentration of iron in the medium, suggesting that these are connected. This connection was demonstrated by the observation that the chromophore is not produced by the *iupS* knockout mutant SID3.

Based on this, we conclude that *iupS* and/or genes located downstream from it in the same six-cistron operon are required for synthesis of the siderophore that is secreted in the medium during growth at low iron concentrations.

The only rhodococcal siderophores that have been characterized to date are heterobactins and rhodobactin which are produced by *Rhodococcus erythropolis* and *Rhodococcus rhodochrous*, respectively. Both siderophores are mixed-ligand siderophores containing hydroxamate and catecholate moieties (6, 10). Spectroscopic analysis of the culture supernatant suggested that the chromophore produced by *R. equi* contains a catecholate moiety. The catecholate moiety of these siderophores, 2,3-dihydroxybenzoate, displays an absorption peak at 315 nm that arises from the π→π⁺ transition of catechols.

Deviations in the wavelength at which maximum absorption occurs have been observed, depending on metal complexation and on the arrangement of hydroxyl groups on the benzene ring of dihydroxybenzoate (21). Upon addition of Fe³⁺, an absorption peak at 528 nm appeared, which may arise from the ligand-to-metal charge transfer band observed when catecholates bind Fe³⁺. This absorption peak therefore probably
represents the ferri form of the \textit{R. equi} siderophore. Ferric chryso bacterin, the catecholate-containing siderophore of \textit{Erwinia chrysanthemi}, is an Fe$^{3+}$-bis-catecholate with an absorption maximum at 525 nm at pH 7.4 (32). In addition to the spectroscopic data, accumulation of catecholates in the medium during growth in iron-depleted, but not iron-replete, medium was observed, matching the appearance of the chroomophore. Although the presence of other iron-coordinating functionalities cannot be ruled out, these findings strongly suggest that the siderophore produced by \textit{R. equi} includes catecholate moieties.

The \textit{R. equi} \textalpha 5 mutant carries a transposase insertion in the first gene of the three-cistron iup\textalpha BC operon, encoding a putative siderophore ABC transport system (29). This mutant strain accumulated both the chromophore and catecholates during growth under iron-replete conditions, whereas the wild-type strain did not. The simplest explanation for this phenotype is that the iup\textalpha ABC-encoded transport system is responsible for uptake of the siderophore produced by the products of the iup\textalpha S operon. However, this remains to be formally proven.

Expression of the iup\textalpha S and iup\textalpha T genes was coordinately regulated, with transcription levels 3 to 4 orders of magnitude higher in the absence of iron compared to when iron was present. Furthermore, the putative catecholate siderophore was not produced during growth of \textit{R. equi} on medium containing 3.6 \mu M FeSO$_4$, resembling the production of rhodobacterin, which is completely repressed in the presence of 3 \mu M iron (10). The genome of \textit{R. equi} harbors two iron repressors, Fur and IdeR (http://www.sanger.ac.uk/Projects/R_equi/); the latter has been shown to be functional in \textit{R. equi} (4). If \textit{R. equi} iron regulation is comparable to that in the related \textit{Mycobacterium tuberculosis}, which also has both Fur and IdeR, then IdeR predominantly regulates iron metabolism, including siderophore biosynthesis (35), whereas Fur controls the oxidative stress response (48). The IdeR homologues DtxR and DmdR are responsible for iron-dependent transcriptional regulation of genes required for siderophore biosynthesis in, respectively, \textit{Corynebacterium} (38) and \textit{Streptomyces} (13, 15).

Transcription of the iupU gene was not regulated by the concentration of iron in the medium and was at a level comparable to that of fully induced iup\textalpha S and iup\textalpha T during growth under iron-depleted conditions. Transcription of siderophore biosynthesis genes is usually tightly controlled by iron, suggesting that iupU is not involved in iron acquisition. However, disruption of iupU did prevent growth of \textit{R. equi} at low iron concentrations, i.e., the same phenotype as iup\textalpha S and iup\textalpha 4 mutations (29). In contrast to \textit{R. equi} SID3, \textit{R. equi} SID1 could not be cross-fed by the wild-type strain, suggesting that the product of IupU either is not secreted or is not diffusible in water. These characteristics are reminiscent of the mycobactin siderophores of mycobacterial species. Thus, in \textit{M. tuberculosis}, for example, extracellular siderophores (carboxymycobactins) donate their iron to the cell wall-bound, nondiffusible mycobactin. Following reduction of ferroc to ferrous iron, iron is subsequently transported across the cell membrane (34). Whether the product of IupU fulfills a role similar to that of mycobactin remains to be established.

The \textit{R. equi} SID1 and \textit{R. equi} SID3 mutants to proliferate in the mouse model was not significantly different than that of the wild type, as determined by liver clearance experiments. This strongly suggests that \textit{R. equi} employs additional iron acquisition systems to allow proliferation in the host. The same phenotype was observed previously for \textit{R. equi} \textalpha 5, which retained wild-type ability to proliferate in macrophages and mice (29). The deployment of multiple, redundant iron uptake systems is not uncommon in pathogenic bacteria. For example, \textit{Burkholderia cenocepacia}, \textit{Bacillus anthracis}, and \textit{Pseudomonas aeruginosa} produce two types of siderophores, yet only one is required for virulence (7, 42, 44). The data presented here therefore identified a catecholate-containing siderophore that is dispensable for within-host growth but required for saprophytic growth under low-iron conditions. Our data imply that \textit{R. equi} may possess additional iron acquisition systems which may be specifically relevant for proliferation during parasitic life.

\textbf{ACKNOWLEDGMENTS} The \textit{R. equi} strain was isolated from a human case of pneumonia in Ireland (11). We thank Ciaran Finn for valuable contributions.

\textbf{REFERENCES}