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implicated cortical regions, limbic brain, and thalamus, as well as the hypothalamus and brain-
stem regions, among others, in interoception [1]. The HPC (and adjoining amygdala) is a
prominent contender–in addition to his profound learning and memory deficits following
HPC surgery to alleviate severe recurrent epilepsy [2], the famous patient H.M. was unable to
sense internal states such as hunger [3]. Similar observations have been made in rodents with
selective HPC lesions [4–6].

A role for the HPC in internal sensing is consistent with evolutionary theory that the HPC
(and olfactory system) arose from a chemosensory epithelium, but with the closing of the
brain ventricles during evolution the hippocampus retained the capacity to sense the internal
milieu of the body [7–9]. It is of note that the ’rostral migratory stream’ in neonatal mice
directly connects the HPC and the chemosensing olfactory system [10], consistent with a com-
mon developmental origin. In addition, a key characteristic of traditional sensory epithelia
such as the olfactory system and retina in many vertebrate species is that neurogenesis contin-
ues into adulthood [11,12], and neurogenesis is also prominent in adult hippocampus, princi-
pally underlying the dentate gyrus (DG) (reviewed in [13].

Internal sensing is a key modulator of behavior. Hunger and thirst are induced by deficien-
cies in nutrient and water, respectively, and elicit clear adaptive motivations and behaviors.
Other diverse internal states, ranging from salt deficiency to hormonal status to inflammation/
infection, exert powerful effects on multiple aspects of brain function, centrally including
adaptive behavior as well as learning and memory, but the target brain region(s) and receptors
remain poorly defined.

The anatomy of the mammalian HPC is consistent with an internal sensory role. The hip-
pocampal formation lies at the interface (������, ’fringe’) between the lower brain and the
mass of the cerebral cortex. In terms of blood supply, the HPC is perhaps the most highly irri-
gated of all brain regions, and is also flanked by the central and lateral ventricles with the cho-
roid plexus [14]. In cross-section, the formation is divided into CA regions CA1 and CA3
(with a short intervening structure, CA2), and the DG. There may be a further functionally dis-
tinct region, the dentate hilus, but this is less secure. Gene expression surveys largely confirm
this anatomy [15,16]. Some have introduced additional subdivisions both within the DG–CA
circuit [17] and along the length of the hippocampus [18]. However, for simplicity we retain
the conventional subdivisions CA1–CA3 and DG.

To address the physiological role of the HPC we previously employed differential hybri-
dization [19], candidate gene screening [20], and gene-trapping [21] to identify genes selec-
tively expressed in HPC. This revealed that the mouse HPC expresses several endocrine
receptors and signaling molecules, potentially indicating a role of the HPC in internal sensing
of body physiology [9]. The aim of the present study was therefore to test rigorously the
hypothesis that the hippocampus is involved in interoception through systematic analysis of
the expression patterns of endocrine receptors across mouse brain, including subregions of the
HPC.

Specifically, we sought to answer two central questions. (i) Does the mouse HPC express a
greater diversity and/or level of endocrine receptors than other brain regions such as the cortex
and the cerebellum? (ii) If a greater level of expression is found, are these receptors expressed
uniformly across the HPC, or are different receptors differently distributed in the different
subdivisions of the HPC?–and can the pattern of expression tell us anything about the function
of the HPC? We report that the HPC is the principal brain site of endocrine receptor expres-
sion and, perhaps surprisingly, this analysis revealed a highly segregated distribution of recep-
tor expression in mouse hippocampus.
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Methods

Endocrine receptors
A list was assembled of receptor molecules in mice and humans that respond to endocrine
(blood-borne) ligands. We elected to study 250 receptors, a number chosen to minimize the
risk that a small number of atypical receptors or experimental artifacts might bias the overall
picture, weighed against the labor-intensive constraints of manually analyzing a larger number
of receptors. To assemble the list, the GeneCards database (www.genecards.org) was searched at
random for genes/gene products containing ’receptor’. A preliminary list (>>250 receptor can-
didates) was manually filtered to exclude (i) non-receptor entries (e.g., receptor downstream
kinase, etc.), (ii) evident receptors for neurotransmitter and non-diffusible cell–cell interaction
molecules, and (iii) receptors not listed in the primary database consulted (Allan Brain Atlas) as
well as receptors whose expression profiles were classified as failing quality control. Although
principally cell-surface molecules, the final list includes intracellular receptors with an endo-
crine role (e.g., nuclear receptors). This generated a list of 253 endocrine receptors (Table A in
S1 Appendix; the molecular functions of specific groups of receptors are discussed in Box 1).

Quantification of mouse brain endocrine receptor expression data
Primary analysis relied on the Allen Brain Atlas (ABA; http://mouse.brain-map.org/), a pub-
licly available repository of �� ���� hybridization gene expression data across mouse brain [22]
made available by the Allen Institute for Brain Science established by Paul G. Allen. To retrieve
expression patterns we entered search terms (e.g., Gene1) into http://mouse.brain-map.org/
search/show, sagittal sections were selected in all cases when these were available. The ’expres-
sion’ option and the target brain region (typically mid-brain including the hippocampus) were
selected, a screenshot was taken; data for all 253 receptors were recorded at the same magnifi-
cation and intensity in a repository of image files. To quantitate expression levels ImageJ
[23,24] was employed. Using default settings, and a standard image size, representative brain
regions (HPC; cortex, CX; and cerebellum, CB) were selected using a cursor box of constant
size and analyzed using the ’measure’ function of ImageJ (the olfactory bulb could not be sys-
tematically analyzed because this structure can be lost during dissection, and the small relative
size of the mouse hypothalamus precludes analysis at the resolution afforded by ABA). In each
case the ’Mean’ function was used instead of the integrated density function ’IntDen’ because,
at constant image size, the relative values are the same. The same technique was used for hip-
pocampal subregions, but the cursor box was manually fitted to the separate regions (CA1,
CA2, CA3, DG). The ’Mean’ function in these cases represents relative (total) expression of the
target gene within the region measured. These analyses generate a digital intensity reading on
a scale of 0 to 255. The program accommodates different colors as follows: black, 0.00; red, 85/
255 (0.333); yellow, 170/255 (0.666); white, 255/255 (1.000), mirroring the output of the ABA.
Because region selection is to some extent subjective, subregion expression analysis was per-
formed by two independent researchers; in cases of disparity consensus was reached following
reanalysis of the primary data. Values were then normalized–a biologically realistic data trans-
formation because (i) the signal for each target depends on the hybridization properties of the
specific probe employed, (ii) the biological effects of a given receptor will vary across a wide
range depending on ligand concentration, ligand affinity, and downstream signal transduc-
tion, and (iii) for a given gene, the inter-regional pattern (ratio) of expression across the brain/
hippocampus (unlike absolute values) is likely to be independent of the specific probe/hybrid-
ization parameters. For normalization, the highest expression value was selected (100%) and
expression in other regions was expressed as a percentage of maximum. Inter-region
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ingestion, but lactose metabolism may be incidental: there are indications that LCT
plays a signaling role. LCT is conserved in fish and �
�����, where lactose is not known
(although the enzyme is also active against plant-derived laminaribiose). It is also a
membrane-bound polypeptide. LCT harbors 3–4 glycosidase domains, but the first two
display no enzymatic activity, and are therefore likely to have a different function [82].
There are two LCT homologs in mammals, lactase/Klotho-like (LCTL) and Klotho (KL).
Both appear to have, like LCT, a C-terminal transmembrane region. KL has a single gly-
cosidase domain whereas LCT and LCTL have 3–4. Importantly, both KL and LCTL are
coreceptors for endocrine-type FGFs [83]. LCT has not yet been tested but, in view of
strong homologies with both LCTL and KL, it is inferred that LCT is also a coreceptor
for endocrine FGFs, which would be consistent with joint expression of FGF1R, FGF3R,
KL, and LCT in HPC. It is not yet known whether these differ in their selectivity for dif-
ferent types of FGFs.

Somatostatin (SST) receptors

SST was first described as a hypothalamic peptide that governs pituitary hormone secre-
tion, and thus contributes to regulation of the HPA axis [84]. Of the five SST receptors
(SSTR1–5), most attention has focused on SSTR2 and SSTR4. Both bind SST and the
related molecule corticostatin. Although HPC expression of SSTR2 was not detected in
ABA (Table B in S1 Appendix), HippoSeq reports selective expression in DG, in contrast
to selective expression of SSTR4 in CA regions–confirming earlier literature that SSTR2
and SSTR4 have non-overlapping patterns of expression, with SSTR2 being expressed in
DG and SSTR4 in CA regions [85]. The two receptors play different (and perhaps con-
verse) roles, as revealed by agonist and knockout experiments [85–87]. In the framework
reported here SSTR4 may be classified as a ’sufficiency’ receptor whereas SSTR2 may be
classified as ’challenge’ on the basis of its effects on stress responses [88]. Further
research will be necessary to unravel whether this might partly reflect receptor binding
to different physiological ligands, with the added complexity that SST/corticostatin are
themselves expressed in some brain neurons (e.g., [84]), and could thus have dual endo-
crine/neurotransmitter functions.

Glucocorticoid receptors

Although the mineralocorticoid receptor (MR/NR3C2) is widely held to be a receptor
for aldosterone (ALDO), that regulates salt and ion balance, MR in brain principally
responds to the stress hormone cortisol (in human)/corticosterone (in rodents)
(’CORT’). This is because receptor specificity is governed by enzymatic ’gating’ (e.g.,
[78,89]): the classical sites for ALDO actions (e.g., kidney and colon) express high levels
of 11BHSD enzymes that rapidly metabolize CORT into inert metabolites. By contrast,
ALDO is resistant to enzymatic gating, and becomes the principal ligand for kidney MR.
Therefore, in brain regions such as the HPC, that lack discernable 11BHSD expression,
CORT becomes the principal ligand for MR; indeed, the affinity of MR for CORT is
higher than for ALDO, and circulating levels of CORT exceed those of ALDO; hippo-
campal MR is thus the principal brain receptor for adrenal glucocorticoid stress hor-
mones in mouse [90].

The situation in human is slightly different because, unlike mouse, rat, and marmoset
[91], where expression of MR is targeted to DG, human MR expression is more broadly
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expression ratios in whole brain were calculated from the un-normalized expression data. Pri-
mary data for receptor gene expression across the brain are given in Table B in S1 Appendix,
and for hippocampal subregions in Table C in S1 Appendix.

Heat mapping and statistical analysis
All analyses focused on genes that were expressed in at least one of the selected brain regions
(98 genes in Fig 1, and 86 genes in Fig 2), and were conducted in the R programming environ-
ment, version 3.3.3 [25]. Heatmaps were generated using heatmap.2 in the gplots library for R.
Note that heatmap.2 provides dendrograms to aid visualization of relationships among com-
ponents of the heatmap but provides no statistics to indicate support for the presented dendro-
grams versus alternative, competing dendrograms. Therefore, we strongly caution against
overinterpretation of the dendrograms presented.

To test whether gene expression profiles differ across brain regions (HPC, CX, and CB) we
measured the correlation in gene expression among brain regions. To this end, we analyzed
normalized gene expression (see above) because variation in probe affinity may generate spuri-
ous correlations. We calculated the correlation using arcsine square root transformed values of
normalized gene expression, and used case-bootstrapping to generate 95% confidence inter-
vals (R package ‘boot’ [26,27]; bootstrapped 10 000 replicates).

Wilcoxon signed rank tests and paired � tests were used to determine whether non-normal-
ized gene expression differed among brain regions (Wilcoxon tests to compare HPC, CX and
CB; paired � tests to compare CA1, CA2, CA3, and DG). We used Chi-square goodness of fit
tests to determine whether genes that are exclusively (or alternatively, predominantly)
expressed in HPC, CB, or CX are distributed equally among these regions. We used a series of
three binomial tests to determine whether the numbers of genes expressed differed among
HPC, CB and CX. Pairwise correlation analysis is given in Table D in S1 Appendix.

Informative genes
For the majority of receptor genes the biological function of the receptor and/or the identity of
the ligand(s) remains unknown. For further analysis we therefore selected an ’informative’
subset of 32 genes where information is available concerning the biological role (or inferred
role) of the ligand/receptor pair. This subset included receptors for known diffusible hormones
(e.g., estrogen, glucocorticoids, progesterone), for cytokines (e.g., interleukins, interferons,
tumor necrosis factor), and growth factors (e.g., fibroblast growth factor). The list of informa-
tive genes is presented in Table E in S1 Appendix.

Inter-region expression ratios in hippocampus; statistical analysis
Normalized expression data were used to test whether gene expression ratios among hippo-
campus regions differed between group A versus B genes (for an explanation of groups A and

across both CA and DG regions [92]. However, unlike mouse, human hippocampus
expresses a gating enzyme (HSD11B1L/HSD11B3) in CA regions (but not in DG; data:
ABA)–a brain-enriched enzyme that converts CORT to inactive cortisone [93].
Although the kinetic parameters of the enzyme have not yet been studied in detail, the
action of MR could also be restricted to DG in human, mirroring the situation in mouse,
but by a different mechanism.

The interoceptive hippocampus
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Fig 1. Endocrine receptor gene expression in mouse brain and enrichment in the hippocampus (HPC). More than
one third of all endocrine receptors were detectably expressed in brain, where they are likely to modulate brain
function and cognition. Expression was restricted to specific brain regions: other than hippocampus (HPC),
cerebellum (CB), and cortex (CX), there was little evidence for specific gene expression in other comparable regions
(~4%; see text). (A) Mouse brain section highlighting the three regions studied in detail: HPC, CB, and CX. (B) (Left)
Heatmap of ’raw’ (unnormalized expression data, see Methods) for HPC versus CB and CX. (Right) Scatterplots of
unnormalized expression levels; horizontal lines are medians and quartiles showing that the mean expression level of
all receptors in HPC is significantly higher than in either CB or CX. (C) Normalized (maximum expression
level = 100%) gene expression data. On three counts, the HPC (red), versus CB (green) and CX (blue), is the major site
of expression of endocrine receptors (253 receptors examined) as further evidenced by the inset showing (i) exclusive
expression in HPC, (ii) most prominent expression in HPC, (iii) overall number of receptors expressed. �Receptors
showing no detectable expression or low-level/punctate/irreproducible expression are classified as expression absent.
Note that the dendrograms (generated by heatmap.2), depicted in A and B, are not supported by statistical analysis
versus alternative, competing dendrograms. Genes that are expressed exclusively in HPC, CB, or CB were not
distributed among these three regions with equal probability, and ‘exclusive genes’ were expressed most often in HPC;
the same result emerges when considering genes that are expressed most prominently in one brain region. Thus, the
HPC expresses both a greater number and level of endocrine receptor genes than any other brain region analyzed.

https://doi.org/10.1371/journal.pone.0227575.g001
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reproduction, and homeostasis, etc., a major proportion of endocrine receptors may directly
regulate brain function and cognition.

We also report that endocrine receptor expression in mouse brain is principally limited to
specific brain regions. Only a small number of genes were expressed in major areas such as the
olfactory bulb (OLF), thalamus, pons/medulla, pallidum, or striatum (4.3%; see below). This
focused our attention on HPC, cortex (CX), and cerebellum (CB). Hypothalamus could not be
examined (Methods and Discussion).

Regarding our first question–the proportion of endocrine receptors expressed in mouse
HPC–we report that 86 of 253 (34.0%) endocrine receptors are expressed in HPC, a higher
number than in either CB (53) or CX (76). Importantly, the level of expression was highest in
HPC. Of all receptors with detectable expression in brain (� = 98), 61.3% were most promi-
nently expressed in the principal neuronal layers (pyramidal and granule cells) of the HPC
(versus 9.1% in CB and 25.5% in CX). Indeed, 17.3% of brain-expressed endocrine receptors
were exclusively expressed in HPC (compared to 4.1% and 7.1% that were exclusively
expressed in CB and CX, respectively). Fig 1 presents heatmaps of the normalized and un-nor-
malized expression data for these three brain regions, and the inset gives numerical values for
exclusivity, most prominent, and detectable expression.

Non-normalized gene expression differed significantly in all pairwise comparisons among
HPC, CB, and CX. The HPC expressed these genes at significantly higher levels than either CX or
CB (Wilcoxon signed rank test; vs CX: � = 3467, � = 3.266e�06; vs CB: � = 3527, � = 1.398e�08),
and CX expressed genes at higher levels then CB (� = 2208.5, � = 0.009944). All comparisons
remained significant after accounting for multiple comparisons. Overall, the probability of detect-
able gene expression was significantly higher for HPC than CB (binomial test, � = 0.0101), but did
not differ for remaining comparisons (binomial tests; HPC and CX: � = 0.58; CX and CB:
� = 0.052); these results remain unchanged after accounting for multiple comparisons.

Although we were unable to systematically screen for expression in OLF (Methods), a small
number of genes from our selection were expressed in OLF (�����, ����, ����, �����, ����,
and ����) of which only ���� and ���� appeared to be specific for OLF. Remaining genes
were expressed in striatum and/or pallidum (��
���, ����, ����) or in pons/medulla (������ ,
�����). No other brain regions stood out with other than trace expression in this survey (small
foci of low-level expression, not presented); in total, these represent 4.3% of all the endocrine
receptors studied, a far lower proportion than in either HPC, CB, or CX.

We conclude that, based on 253 receptors, there is significantly greater endocrine receptor
gene expression in HPC than in either CB or CX, or in any other comparable brain region ana-
lyzed (noting that hypothalamus could not be studied; Discussion).

Distribution across hippocampal subregions
With regard to our second question–the pattern of expression within the HPC–all the recep-
tors studied with detectable HPC expression (� = 86; Fig 1) identified mRNA within the cell
bodies of the principal excitatory neurons (pyramidal cells, DG neurons) of the HPC. How-
ever, the expression patterns of the assembled genes were non-randomly distributed across
subregions–although some were detectably expressed in all subregions, many were expressed
only in restricted regions of the HPC. Fig 2 presents the distribution (heatmap) of receptor
expression across the different regions of the mouse HPC. To address correlations between
HPC subregions, we performed pairwise correlation analysis (Table D in S1 Appendix). Nor-
malized gene expression was significantly negatively correlated between DG and CA1, and
positively correlated between CA2 and CA3. All remaining combinations of CA1, CA2, CA3,
and DG provided no evidence of correlated gene expression (Table D in S1 Appendix).
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To validate the subregional distributions in mouse HPC, we compared ABA �� ���� hybridiza-
tion data against a second database, HippoSeq (Methods; this database only addresses HPC
expression). Although there were some discordances, the HippoSeq database supported the over-
all subregional expression patterns detected by �� ���� hybridization (Table F in S1 Appendix).

Distribution of receptors with established roles: Subregion–function
correlations reveal a challenge–sufficiency axis
For the majority of the receptors studied here the biological ’meaning’ is unknown, either
because the receptor ligand is unknown or because the physiological role of the ligand(s) has
not been established. To illustrate, the first and last genes in our list, ��
�� and ���� �!,
respectively encode activin A receptor type 1 and a vomeronasal-like receptor. Ligands for
ACVR1 include both inhibins and activins, that inhibit and activate diverse physiological pro-
cesses and, moreover, have opposing functions; the primary �� 
�
� ligand for ACVR1 in the
CNS remains unknown. For VMNR234, the ligand is also unknown. Given this uncertainty
we examined receptors from an ’informative’ list (� = 32) where the function of the ligand is
known (or inferred): these include angiotensins, cytokines, fibroblast growth factor (FGF),
interleukins/interferons, prostaglandins, retinoids, steroid hormones (androgens, estrogens,
glucocorticoids and mineralocorticoids), tumor growth factor (TGF), and tumor necrosis fac-
tor (TNF) (Methods and Table E in S1 Appendix). This revealed a gradient of expression
across the HPC, where some receptors were principally expressed in DG regions, and others
were principally expressed in CA regions (Fig 3).

Receptor categorization by function. To understand this pattern we sought a unifying
principle that might underpin and explain the gradient of receptor expression. It became
apparent that receptor function differed according to location within the HPC. Receptors
reflecting stress of various types (e.g., receptors for inflammatory cytokines and glucocorti-
coids) provided a clue because their expression was clustered in DG. Conversely, it was noted
that receptors responding to growth-promoting ligands (e.g., growth factors and sex steroids)
were principally localized in CA regions. On this basis it was possible to classify each ligand/
receptor pair into two groups.

Because one group of receptor ligands (designated ’group A’) signal loss of homeostasis
and/or physiological stress of various types (these ligands include angiotensins–blood pressure
fall; glucocorticoids–stress hormones; cytokines, interferons, and TNF–immune challenge),
we describe these here as denoting ’challenge’, whereas a second group of ligands (’group B’)
conversely includes growth-promoting hormones and factors (e.g., androgens, estrogens,
fibroblast growth factor, retinoids), which we term here ’sufficiency’ (more detailed listing and
discussion of receptor function is presented in Box 1 and Table H in S1 Appendix). Although
this classification is fully open to debate and refinement, we believe that it provides a potential
interpretation of the observed gradient of expression.

As shown in Fig 3, there was unexpected clustering of group A (’challenge’) receptor expres-
sion in DG, whereas group B (’sufficiency’) receptors were predominantly expressed in CA
regions.

To address the statistical significance of the patterning of group A versus group B observa-
tion we calculated the ratios between different hippocampal subregions (mean of CA regions
versus DG) by conversion to log10 values and subtraction (Methods) and plotted the results for
the two groups A and B (Fig 4). The ratio of gene expression in CA to DG differed significantly
between group A and B genes (Welch’s �-test, � = 4.22, �� = 27.69, � = 0.00024). Permutation
tests confirmed these findings. The analysis was then repeated for the HippoSeq data; this also
achieved significance for CA regions versus DG (� = 0.0061; Table F in S1 Appendix).
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We conclude that the expression pattern is highly structured within mouse HPC, and that
group A receptors (’challenge’) are preferentially expressed in DG, and group B receptors (’suf-
ficiency’) are selectively expressed in CA regions (Fig 3).

Further receptors confirm the generality of the axis. To test whether the axis extends to
other endocrine receptors, we examined the expression pattern (in both ABA and HippoSeq)
of other informative receptors (that were not on our original list) whose ligand is known and

Fig 3. Expression of ’informative’ endocrine receptors in subregions of the mouse hippocampus (HPC). (Above) Principal
neuroatomical subdivisions of the rodent HPC (adapted from the model of [15]). (Below) Informative (see main text) receptors
sorted according to regional expression (heatmap, normalized data) with CA1 and DG at the two extremes (Methods) showing
expression clustering of receptor types in different regions (e.g., ’sufficiency’–FGF receptors FGFR1, FGFR3, and KL in CA
regions; and ’challenge’–interleukin and TNF receptors IL1R1, IL17RD, IL10RB, IL2RB, TNFRSRF 25, TNFRSF21, TNFRSF19
in DG).

https://doi.org/10.1371/journal.pone.0227575.g003
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neurogenesis, � test, � = 0.0002; chi-square test, � = 0.006) confirming that the patterns are
indeed different.

In conclusion, ligand effects on both LTP and neurogenesis confirm that these hippocampal
receptors are functional. Moreover, they indicate that the challenge/sufficiency axis extends to
receptor function, wherein DG/challenge receptors predominantly inhibit both neurogenesis
and synaptic plasticity, whereas CA/sufficiency ligands principally promote both parameters.

Discussion
This work confirms and extends prior suggestions that the HPC is involved in internal sensing,
as reflected here by greater expression of endocrine receptors than in any other brain region,
including CX and CB.

With regard to our first question (how many receptors), we report that 86 of 253 (34%)
endocrine receptor genes are expressed in mouse HPC, and 17/98 (17.3%) are exclusively
expressed in HPC, values markedly higher than for any other brain region. This accords with
our previous data, based on small sample size, that 37% (21–59%, 95% CI) of mouse genes are
expressed in HPC, a selection that predominantly encodes endocrine receptors and signaling
molecules [21]. Aside from CX and CB, only low-level expression of these receptors was
observed in other comparable brain regions (e.g., OLF, thalamus, pons/medulla, pallidum, or
striatum; hypothalamus was not studied); these represent ca 4% of all receptors studied. How-
ever, we do not exclude the possibility that some receptors are expressed in other brain regions
at levels below the limit of detection of �� ���� hybridization.

Thus, of all major brain regions in mouse, endocrine receptor genes are most prominently
expressed in HPC, attesting that the present-day HPC is likely to play a role in sensing and
responding to internal blood-borne (endocrine) markers of body physiology, arguing that the
sensory function (interoception) attributed to the primeval hippocampus [7–9] has been
retained to this day.

Our analysis has focused largely on hormonal ligands and has not addressed whether the
HPC can directly sense levels of low molecular weight ligands (e.g., minerals, pH, CO2, etc.)
because much less is known about their receptors. For example, NHE4 (SLC9A4), that is acti-
vated by hypertonicity, is well expressed in HPC (Allen Brain Atlas), but its exact function is
unknown. It could mediate direct sensing of metabolites, although this remains speculative. It
is likely that, with evolution, the mouse HPC now responds principally to peripheral hormones
that act as proxies for metabolite levels. For example, aldosterone, a salt regulatory hormone,
targets glucocorticoid receptors in the HPC.

Regarding our second question (patterning within the HPC), we report a highly significant
non-random distribution of receptor expression across different HPC subregions of mouse
HPC. Receptors whose biological function is known or may be inferred (’informative’ genes,
� = 32) were expressed in a highly structured pattern within the formation. Ligands signaling
different aspects of challenge (termed here group A: stress, infection, inflammation, blood
pressure fall) were principally found to target receptors expressed in DG, whereas ligands sig-
naling aspects of sufficiency (group B: androgens, endocrine FGF, estrogens, progestins, reti-
noic acid, thyroid hormones) instead principally target the CA regions, with a mean 8.33-fold
difference in the DG versus CA expression ratio (�< 0.0001).

Although the validity of this distinction remains open to debate (see Results for the underly-
ing rationale), for the purposes of discussion we term this a ’challenge/sufficiency’ axis. The
highly ordered (DG vs CA) segregation of receptor expression in mouse brain raises the ques-
tion of the function of this segregation (see below).
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It will be vital to test these concepts in mice genetically engineered to express designer
receptors only in DG versus CA regions, and to study the effect of ligand administration on
physiology, behavior, and memory. It would also be very informative to study cross-species
conservation of expression in larger mammals (rabbit, sheep, non-human primates) where the
relative contribution of the hypothalamus (that was too small to be analyzed) could be exam-
ined in detail. Moreover, in addition to looking forwards (from mouse to primates), it would
be highly illuminating (i) to examine in detail the trajectories of endocrine receptor expression
during early development, and (ii) to address the expression profiles of homologs of these
genes in other representatives of the vertebrate lineage including birds, reptiles, and fish. One
promising line of investigation will be to dissect memory processes in the earliest organisms
that encode associations between different internal and external stimuli. Addressing the earli-
est precedents, and the traces these have left in extant species, will be a fertile territory for new
insights into the operation of the human brain.

Supporting information
S1 Appendix. Supplementary tables A–H.
(PDF)

Acknowledgments
We thank the Allen Brain Institute (Seattle, WA, USA) and Janelia (Ashburn, VA, USA) for
making their data publicly available, and to whom we express our deep appreciation. S.S.
thanks the Carnegie Trust for the Universities of Scotland for a vacation scholarship. We also
thank an anonymous reviewer for suggesting further genes for study. All data needed to evalu-
ate the conclusions in the paper are presented in the paper and/or the supplementary materials
online.

Author Contributions
Conceptualization: Richard Lathe, Gernot Riedel.

Formal analysis: Richard Lathe, Crispin Jordan.

Investigation: Richard Lathe, Sheena Singadia, Gernot Riedel.

Methodology: Richard Lathe, Sheena Singadia, Gernot Riedel.

Project administration: Richard Lathe, Gernot Riedel.

Validation: Richard Lathe, Sheena Singadia, Crispin Jordan, Gernot Riedel.

Writing – original draft: Richard Lathe, Sheena Singadia, Gernot Riedel.

Writing – review & editing: Sheena Singadia, Crispin Jordan, Gernot Riedel.

References
1. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev

Neurosci. 2002; 3, 655–666. https://doi.org/10.1038/nrn894 PMID: 12154366

2. Scoville WB and Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neuro-
surg Psychiat. 1957; 20, 11–21. https://doi.org/10.1136/jnnp.20.1.11 PMID: 13406589

3. Hebben N, Corkin S, Eichenbaum H, Shedlack K. Diminished ability to interpret and report internal
states after bilateral medial temporal resection: case H.M. Behav Neurosci. 1985; 99, 1031–1039.
https://doi.org/10.1037//0735-7044.99.6.1031 PMID: 3843537

The interoceptive hippocampus

PLOS ONE | https://doi.org/10.1371/journal.pone.0227575 January 15, 2020 17 / 22





28. Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N. Hipposeq: a comprehensive RNA-seq
database of gene expression in hippocampal principal neurons. Elife. 2016; 5, e14997. https://doi.org/
10.7554/eLife.14997 PMID: 27113915

29. Tancredi V, Zona C, Velotti F, Eusebi F, Santoni A. Interleukin-2 suppresses established long-term
potentiation and inhibits its induction in the rat hippocampus. Brain Res. 1990; 525, 149–151. https://
doi.org/10.1016/0006-8993(90)91331-a PMID: 2173960

30. Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M. Interleukin-1 beta inhibits long-term potentiation in
the CA3 region of mouse hippocampal slices. Eur J Pharmacol. 1990; 181, 323–326. https://doi.org/10.
1016/0014-2999(90)90099-r PMID: 2166677

31. Tancredi V, D’Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A et al. Tumor necrosis factor alters
synaptic transmission in rat hippocampal slices. Neurosci Lett. 1992; 146, 176–178. https://doi.org/10.
1016/0304-3940(92)90071-e PMID: 1337194

32. Bellinger FP, Madamba S, Siggins GR. Interleukin 1 beta inhibits synaptic strength and long-term
potentiation in the rat CA1 hippocampus. Brain Res. 1993; 628, 227–234. https://doi.org/10.1016/0006-
8993(93)90959-q PMID: 8313151

33. Coogan A and O’Connor JJ. Inhibition of NMDA receptor-mediated synaptic transmission in the rat den-
tate gyrus in vitro by IL-1 beta. Neuroreport. 1997; 8, 2107–2110. https://doi.org/10.1097/00001756-
199707070-00004 PMID: 9243593

34. Ikegaya Y, Saito H, Torii K, Nishiyama N. Activin selectively abolishes hippocampal long-term potentia-
tion induced by weak tetanic stimulation in vivo. Jpn J Pharmacol. 1997; 75, 87–89. https://doi.org/10.
1254/jjp.75.87 PMID: 9334889

35. Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C. Interferon-alpha inhibits long-term potentiation
and unmasks a long-term depression in the rat hippocampus. Brain Res. 2000; 885, 14–24. https://doi.
org/10.1016/s0006-8993(00)02877-8 PMID: 11121525

36. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA. The age-related attenuation in long-term
potentiation is associated with microglial activation. J Neurochem. 2006; 99, 1263–1272. https://doi.org/
10.1111/j.1471-4159.2006.04165.x PMID: 16981890

37. Ishiyama J, Saito H, Abe K. Epidermal growth factor and basic fibroblast growth factor promote the gen-
eration of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Res. 1991; 12,
403–411. https://doi.org/10.1016/0168-0102(91)90071-6 PMID: 1664922

38. Matsuoka N, Kaneko S, Satoh M. Somatostatin augments long-term potentiation of the mossy fiber-
CA3 system in guinea-pig hippocampal slices. Brain Res. 1991; 553, 188–194. https://doi.org/10.1016/
0006-8993(91)90823-e PMID: 1681981

39. Hisajima H, Saito H, Abe K, Nishiyama N. Effects of acidic fibroblast growth factor on hippocampal
long-term potentiation in fasted rats. J Neurosci Res. 1992; 31, 549–553. https://doi.org/10.1002/jnr.
490310319 PMID: 1379306

40. Yasui M and Kawasaki K. CCKB-receptor activation augments the long-term potentiation in guinea pig
hippocampal slices. Jpn J Pharmacol. 1995; 68, 441–447. https://doi.org/10.1254/jjp.68.441 PMID:
8531419

41. Vara H, Munoz-Cuevas J, Colino A. Age-dependent alterations of long-term synaptic plasticity in thy-
roid-deficient rats. Hippocampus. 2003; 13, 816–825. https://doi.org/10.1002/hipo.10132 PMID:
14620877

42. Dong J, Yin H, Liu W, Wang P, Jiang Y, Chen J. Congenital iodine deficiency and hypothyroidism impair
LTP and decrease C-fos and C-jun expression in rat hippocampus. Neurotoxicology. 2005; 26, 417–
426. https://doi.org/10.1016/j.neuro.2005.03.003 PMID: 15935212

43. Taskin E, Artis AS, Bitiktas S, Dolu N, Liman N, Suer C. Experimentally induced hyperthyroidism dis-
rupts hippocampal long-term potentiation in adult rats. Neuroendocrinology. 2011; 94, 218–227. https://
doi.org/10.1159/000328513 PMID: 21778690

44. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z et al. Tumor necrosis factor receptor 1 is
a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci. 2006;
26, 9703–9712. https://doi.org/10.1523/JNEUROSCI.2723-06.2006 PMID: 16988041

45. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol
Sci. 2012; 8, 1254–1266. https://doi.org/10.7150/ijbs.4679 PMID: 23136554

46. Vallieres L, Campbell IL, Gage FH, Sawchenko PE. Reduced hippocampal neurogenesis in adult trans-
genic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002; 22, 486–492. https://
doi.org/10.1523/JNEUROSCI.22-02-00486.2002 PMID: 11784794

47. Saaltink DJ and Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance
between excitation and inhibition? Cell Mol Life Sci. 2014; 71, 2499–2515. https://doi.org/10.1007/
s00018-014-1568-5 PMID: 24522255

The interoceptive hippocampus

PLOS ONE | https://doi.org/10.1371/journal.pone.0227575 January 15, 2020 19 / 22



48. Odaka H, Adachi N, Numakawa T. Impact of glucocorticoid on neurogenesis. Neural Regen Res. 2017;
12, 1028–1035. https://doi.org/10.4103/1673-5374.211174 PMID: 28852377

49. Borsini A, Alboni S, Horowitz MA, Tojo LM, Cannazza G, Su KP et al. Rescue of IL-1beta-induced
reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav Immun.
2017; 65, 230–238. https://doi.org/10.1016/j.bbi.2017.05.006 PMID: 28529072

50. Borsini A, Cattaneo A, Malpighi C, Thuret S, Harrison NA, Zunszain PA et al. Interferon-alpha reduces
human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent
mechanisms. Int J Neuropsychopharmacol. 2018; 21, 187–200. https://doi.org/10.1093/ijnp/pyx083
PMID: 29040650

51. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C et al. FGF-2 regulation of neuro-
genesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A. 2001; 98, 5874–5879. https://
doi.org/10.1073/pnas.101034998 PMID: 11320217

52. Fowler CD, Liu Y, Wang Z. Estrogen and adult neurogenesis in the amygdala and hypothalamus. Brain
Res Rev. 2008; 57, 342–351. https://doi.org/10.1016/j.brainresrev.2007.06.011 PMID: 17764748

53. Suzuki S, Gerhold LM, Bottner M, Rau SW, Dela CC, Yang E et al. Estradiol enhances neurogenesis
following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol. 2007; 500, 1064–
1075. https://doi.org/10.1002/cne.21240 PMID: 17183542

54. Chan M, Chow C, Hamson DK, Lieblich SE, Galea LA. Effects of chronic oestradiol, progesterone and
medroxyprogesterone acetate on hippocampal neurogenesis and adrenal mass in adult female rats. J
Neuroendocrinol. 2014; 26, 386–399. https://doi.org/10.1111/jne.12159 PMID: 24750490

55. Kang W and Hebert JM. FGF signaling is necessary for neurogenesis in young mice and sufficient to
reverse its decline in old mice. J Neurosci. 2015; 35, 10217–10223. https://doi.org/10.1523/
JNEUROSCI.1469-15.2015 PMID: 26180198

56. Bingman VP and Muzio RN. Reflections on the structural-functional evolution of the hippocampus: what
is the big deal about a dentate gyrus? Brain Behav Evol. 2017; 90, 53–61. https://doi.org/10.1159/
000475592 PMID: 28866681

57. Gray JA. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal
System. Oxford: Oxford University Press; 1982.

58. Gray JA and McNaughton N. The Neuropsychology of Anxiety: An Enquiry into the Functions of the
Septo-Hippocampal System. Oxford: Oxford University Press; 2000.

59. Smith JW, Urba WJ, Curti BD, Elwood LJ, Steis RG, Janik JE et al. The toxic and hematologic effects of
interleukin-1 alpha administered in a phase I trial to patients with advanced malignancies. J Clin Oncol.
1992; 10, 1141–1152. https://doi.org/10.1200/JCO.1992.10.7.1141 PMID: 1607919

60. Capuron L, Ravaud A, Gualde N, Bosmans E, Dantzer R, Maes M et al. Association between immune
activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy.
Psychoneuroendocrinology. 2001; 26, 797–808. https://doi.org/10.1016/s0306-4530(01)00030-0
PMID: 11585680

61. Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P. Mood and cognitive side effects of inter-
feron-alpha therapy. Semin Oncol. 1998; 25, 39–47.

62. Raison CL, Demetrashvili M, Capuron L, Miller AH. Neuropsychiatric adverse effects of interferon-
alpha: recognition and management. CNS Drugs. 2005; 19, 105–123. https://doi.org/10.2165/
00023210-200519020-00002 PMID: 15697325

63. Exton MS, Baase J, Pithan V, Goebel MU, Limmroth V, Schedlowski M. Neuropsychological perfor-
mance and mood states following acute interferon-beta-1b administration in healthy males. Neuropsy-
chobiology. 2002; 45, 199–204. https://doi.org/10.1159/000063671 PMID: 12097809

64. Creaven PJ, Plager JE, Dupere S, Huben RP, Takita H, Mittelman A et al. Phase I clinical trial of recom-
binant human tumor necrosis factor. Cancer Chemother Pharmacol. 1987; 20, 137–144. https://doi.org/
10.1007/bf00253968 PMID: 3664933

65. Zarrouf FA, Artz S, Griffith J, Sirbu C, Kommor M. Testosterone and depression: systematic review and
meta-analysis. J Psychiatr Pract. 2009; 15, 289–305. https://doi.org/10.1097/01.pra.0000358315.
88931.fc PMID: 19625884

66. Gruber AJ and Pope HG Jr. Psychiatric and medical effects of anabolic-androgenic steroid use in
women. Psychother Psychosom. 2000; 69, 19–26. https://doi.org/10.1159/000012362 PMID:
10601831

67. Bauer M, Hellweg R, Graf KJ, Baumgartner A. Treatment of refractory depression with high-dose thy-
roxine. Neuropsychopharmacology. 1998; 18, 444–455. https://doi.org/10.1016/S0893-133X(97)
00181-4 PMID: 9571653

The interoceptive hippocampus

PLOS ONE | https://doi.org/10.1371/journal.pone.0227575 January 15, 2020 20 / 22





Prog Neuropsychopharmacol Biol Psychiatry. 2018; 86, 390–400. https://doi.org/10.1016/j.pnpbp.
2018.01.022 PMID: 29409919

89. Chapman K, Holmes M, Seckl J. 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of
tissue glucocorticoid action. Physiol Rev. 2013; 93, 1139–1206. https://doi.org/10.1152/physrev.00020.
2012 PMID: 23899562

90. De Kloet ER, Reul JM, Sutanto W. Corticosteroids and the brain. J Steroid Biochem Mol Biol. 1990; 37,
387–394. https://doi.org/10.1016/0960-0760(90)90489-8 PMID: 2257242

91. Pryce CR, Feldon J, Fuchs E, Knuesel I, Oertle T, Sengstag C et al. Postnatal ontogeny of hippocampal
expression of the mineralocorticoid and glucocorticoid receptors in the common marmoset monkey. Eur
J Neurosci. 2005; 21, 1521–1535. https://doi.org/10.1111/j.1460-9568.2005.04003.x PMID: 15845080

92. Seckl JR, Dickson KL, Yates C, Fink G. Distribution of glucocorticoid and mineralocorticoid receptor
messenger RNA expression in human postmortem hippocampus. Brain Res. 1991; 561, 332–337.
https://doi.org/10.1016/0006-8993(91)91612-5 PMID: 1666329

93. Huang C, Wan B, Gao B, Hexige S, Yu L. Isolation and characterization of novel human short-chain
dehydrogenase/reductase SCDR10B which is highly expressed in the brain and acts as hydroxysteroid
dehydrogenase. Acta Biochim Pol. 2009; 56, 279–289. PMID: 19436836

The interoceptive hippocampus

PLOS ONE | https://doi.org/10.1371/journal.pone.0227575 January 15, 2020 22 / 22


