226Ra determination via the rate of 222Rn ingrowth with the Radium Delayed Coincidence Counter (RaDeCC)

Citation for published version:

Digital Object Identifier (DOI):
10.4319/lom.2013.11.594

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Limnology and Oceanography: Methods

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
226Ra determination via the rate of 222Rn ingrowth with the Radium Delayed Coincidence Counter (RaDeCC)

Walter Geibert1*, Valentí Rodellas2, Amber Annett1, Pieter van Beek1, Jordi Garcia-Orellana2,4, Yu-Te Hsieh5, and Pere Masque2,4

1School of GeoSciences, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JW, UK
2Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
3LEGOS, Laboratoire d’Etudes en Géophysique et Oceanographie Spatiales, Observatoire Midi-Pyrénées, 14, avenue Edouard Belin, Toulouse, 31400, France
4Department de Física, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
5Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN, England

Abstract

We present a new method to determine 226Ra in aqueous environmental samples, based on the rate of ingrowth of 222Rn from 226Ra, using the radium delayed coincidence counter (RaDeCC). We use the same instrument setup that is used for the determination of 223Ra and 224Ra. In contrast to methods published earlier, the approach does not require a modification of the counting equipment, counting separately for 226Ra, or waiting for radioactive equilibrium. We show that the calibration works from as low as 10 dpm (0.166 Bq) per sample, up to more than 1000 dpm (16.7 Bq). Although uncertainties are larger (typically around 10%) than reported uncertainties for γ counting, liquid scintillation, or mass spectrometry at comparable activities, the simple setup, low cost, and robustness of the method make it a useful approach for underway measurements, combinations with short-lived radium isotopes, or monitoring purposes when limited funding or infrastructure is available.

226Ra, a naturally occurring isotope of the 238U-series with a half-life of 1600 years, is a tracer of considerable interest in studies of the marine environment, estuarine systems, and submarine groundwater discharge (Burnett et al. 2006; Moore 2003). It can also be of radiation safety concern, e.g., in the vicinity of offshore oil production facilities (Moatar et al. 2010). The main source of 226Ra in the oceans are sediments, and because of its low particle reactivity in saline waters, it is a valuable water mass tracer of its own. 226Ra is also used in combination with the other three radium isotopes (223Ra, 224Ra, and 228Ra), using their isotope ratios. Radium isotopes store valuable information on mixing in aqueous systems, and the fact that four isotopes with different half-lives from 3.66 days to 1600 years exist, makes the so-called radium quartet unique in its potential to study mixing and submarine groundwater discharge on a wide range of time scales (Charette et al. 2001; Ku and Luo 2008; Rama and Moore 1996). The full potential of the radium quartet has only become available recently, after the development of the Radium Delayed Coincidence Counter (RaDeCC), which allowed the simple and reliable determination of 223Ra and 224Ra (Moore 2008; Moore and Arnold 1996).

The RaDeCC method is based on the filtration of a water sample through a Mn-fiber, which quantitatively extracts radium isotopes from the solution. Then, the Mn-fiber, on which radium isotopes are adsorbed, is placed in the RaDeCC system. As the decay chains of all natural radium isotopes include an isotope of radon, this gas emanates from the Mn-fiber and is continuously transferred to a scintillation cham-

*Corresponding author: E-mail: walter.geibert@ed.ac.uk

Acknowledgments

We would like to gratefully acknowledge support from funding agencies: W.G. and Y.-T. Hsieh from the National Environmental Research Council through “UK Geotraces” (NE/H008497/1); W.G. from the Scottish Alliance for GeoSciences and the Environment; V. R. for a PhD fellowship (AP2008-03044) from MICINN (Spain); A.A. from the “Antarctic Science” research bursary, the British Antarctic Survey, NERC’s Collaborative Gearing Scheme, by the Natural Sciences and Engineering Research Council of Canada and by the University of Edinburgh; W.G., A. A., and P.v.B. received travel support from the British Council-Egide “Alliance” scheme; P. M. through the prize ICREA Academia, funded by the Generalitat de Catalunya. Thanks go to Gideon Henderson, Raja Ganeshram, and Michiel Rutgers van der Loeff; their contributions were essential to enable us to finish this manuscript. Three anonymous reviewers have provided helpful insights that contributed to improve the manuscript substantially.

DOI 10.4319/lom.2013.11.594
ber, in which the subsequent decays are detected. The different half-lives of the decay products of 221Ra and 224Ra allow the discrimination of these nuclides based on an electronic detection gateway pioneered in 1963 (Giffin et al. 1963). All events, including decays that cannot be attributed to either the 223Ra chain or the 224Ra chain, are counted in a specific channel.

So far, measurements with the RaDeCC counter in standard configuration could not provide 226Ra values, which made a separate measurement with different equipment necessary. Most commonly, this additional method is γ-spectrometry, which also requires further processing of the sample (i.e., pre-concentrating radium by co-precipitation with Ba, or ashing the Mn-fibers; see e.g., Charette et al. 2001; Moore et al. 1995). Increasingly, mass spectrometry is applied to measure 226Ra (Bourquin et al. 2011; Foster et al. 2004). Further alternatives are given in liquid scintillation systems, or after a waiting period for 222Rn ingrowth, a RaDeCC system with a substantially modified sample holding cell (Waska et al. 2008). Several of these methods have been evaluated as part of a recent inter-calibration study in the context of the international GEOTRACES exercise, highlighting the need for common reference materials (Charette et al. 2012). A comparison of several methods based on Mn-fiber can be found in Peterson et al. (2009).

Here, we present a new evaluation method that allows extracting information on the 220Ra concentration from the RaDeCC channel that records total counts, without modifying the analytical setup that is used for 221Ra or 224Ra. The concept is based on the increasing concentration of 222Rn from the 226Ra present in the sample. In a flushed counting system, initially no 222Rn is present, and all counts observed in the “total channel” are due to daughters of 224Ra and 223Ra. Once the system is closed, any increase of the counting rate, or trend, in this “total channel” over time is then due to 222Rn gas building up from 226Ra, the rate of increase in 222Rn being directly related to 226Ra activity. We exploit this relationship to obtain 226Ra values, without waiting for a radioactive equilibrium. Indeed, we obtain the values just together with a measurement of 223Ra and 224Ra, without need for a separate analysis. The method can even be applied to existing runs for short-lived Ra isotopes, if 224Ra and 223Ra are low enough, without re-analyzing the fiber. It requires only minimal infrastructure, making it a very cost-efficient alternative for 226Ra analysis.

Methods
Equipment

The analytical procedure used here was the Radium Delayed Coincidence Counting (RaDeCC) instrument, supplied by Scientific Computer Instruments, as described in Moore and Arnold (1996). It consists essentially of (1) a large-volume scintillation cell, connected to a photomultiplier to detect radioactive decay events, (2) an electronic gateway system, which registers counts and splits the registered events into different channels, depending on the time elapsed until the next event happens, and (3) a pump, which continuously pumps helium through the sample (on an acrylic fiber coated with manganese dioxide, Mn fiber), and subsequently through the scintillation chamber. Our study includes data from three different laboratories: the University of Edinburgh, the Universitat Autònoma de Barcelona, and the Université Paul Sabatier/LEGOS Toulouse. γ counting for 226Ra was done on planar detectors (Université Paul Sabatier, Toulouse) and on a well-type high purity Ge detector (Universitat Autònoma de Barcelona). 226Ra determinations via MC-ICP-MS were performed at the University of Oxford. Sampling took place as described in Moore (2008), using Mn-fiber supplied by Scientific Computer Instruments. Samples were rinsed with deionised or distilled water, partially dried (Sun and Torgersen 1998) and stored in resealable plastic bags. They were placed in the cartridges of the RaDeCC system only before measurements.

Principle

Briefly, the RaDeCC system records decay events in three different channels, depending on the time elapsed between two subsequent signals, which reflect the half-lives of decay products in the relative decay chains (Moore and Arnold 1996). One channel counts decay events from the 223Ra decay chain; a second channel counts events from the decay chain following 224Ra; and the third channel (“total”) records basically all events, independent of previous or subsequent events. Therefore, each signal in the 222Ra or 224Ra channels is accompanied by events in the “total” channel, but not all events in the “total” channel are due to 222Ra or 224Ra decay products. Counts in the total channel have been known to build up over time during a run, due to ingrowth of 222Rn from 226Ra, which is also present on the fiber, up to activities that start to affect counts in the 222Ra and 224Ra channels due to chance coincidence events. Here, we exploit this ingrowth to determine the 226Ra activity in the sample. Rather than waiting for equilibrium, which is quite demanding in terms of instrument time and requirements for gas tightness of the setup (Waska et al. 2008), we only use the first 1000 min of a run. During this relatively short period, the increase on the counting rate of 222Rn can be approximated as a linear trend, as the influence of 222Rn decay term is small (Fig. 1).

Theoretical 226Ra efficiency in the total channel

What rate of increase in counts per minute (cpm) from 226Ra should we expect on a RaDeCC system? The facts to consider are (1) the activity of 226Ra on a sample (fiber), (2) the ingrowth of 222Rn, (3) the desorption efficiency of 222Rn from the fiber, (4) the fraction of detector volume relative to the entire system volume, (5) detector efficiency, and (6) number of subsequent decay events related to a previous 222Rn atom decay.

The calculation differs slightly from the calculation for the other two channels as given in Moore and Arnold (1996), as we do not have to consider decay on the way from the fiber to the detector because of the long half-life of 222Rn, and we don’t have to include probabilities of coincidences of two events, like for the 224Ra and the 226Ra channel.
To calculate the expected trend in count rate due to ^{222}Rn ingrowth, we assume a starting ^{226}Ra activity of 1 dpm. Ingrowth is calculated as $1-e^{-\lambda t}$, where λ is the decay constant of ^{222}Rn, and t is the time elapsed since starting the analysis (assuming a starting value of 0 dpm ^{222}Rn). We assume the desorption of ^{222}Rn to be quantitative over the time available between generation by ^{226}Ra and subsequent decay, as supported e.g., by the results of Butts et al. (1988). The fraction of detector volume relative to total system volume is assumed to be 0.77, following Moore and Arnold (1996). We assume a detector efficiency of 0.78 as a starting point, also following Moore and Arnold (1996). Finally, we assume each ^{222}Rn atom to generate three subsequent α-decay events, modeled in approximation as having the same probability, which triples the probability to detect a decay due to ^{222}Rn in the theoretical example. Please note that real measurements will deviate by different detection efficiencies for the daughter nuclides, variable cell characteristics, and a time lag between ^{222}Rn and the decay of daughter isotopes due to the half-lives of intermediate products. This will later be reflected in actual calibration factors, but the assumptions that lead to Eq. 1 are a good approximation to understand the expected cell behavior.

$$\text{expected count rate} = (1-e^{-\lambda t}) \times 0.77 \times 0.78 \times 3$$

$$\lambda = 0.000125893, \ t = \text{time elapsed since start of measurement}.$$

Using the starting parameters outlined above, we determine an expected increase of 0.000213 cpm/dpm over the first 1000 min (Fig. 1).

$$y = 0.0002023x + 0.002331$$

![Graph showing theoretical evolution of ^{222}Rn signal due to ^{226}Ra for an activity of 1 dpm in the “total channel” in a closed system, considering typical efficiencies of a RaDeCC system. During the first 1000 min, ^{222}Rn reaches less than 12% of the ^{224}Ra activity (not shown here), and the decay term is almost negligible. Therefore, ingrowth is nearly linear, and a linear regression (solid line) of ^{222}Rn activity versus time (trend) is almost indistinguishable from the actual exponential ingrowth (dashed line).](image)

It should be considered that system efficiencies may vary, e.g., values in Moore (2008) are slightly higher than those given in Moore and Arnold (1996), and so does the ratio of detector volume over total volume, so efficiencies should be expected to differ slightly between systems, depending on the geometry and the detector efficiency. The experimental trends in ^{222}Rn will be compared with the theoretical value of 0.000213 below, after having introduced the required data processing of raw counts from the total channel in the following section.

Evaluation of the counting results

Having shown the expected direct relationship between ^{226}Ra concentration and ^{222}Rn ingrowth in a closed system (Fig. 1), the aim of our calculation is to determine the trend of ^{222}Rn in the RaDeCC “total channel” from a measurement. Whereas most of the signal seen in this channel is indeed due to ^{222}Rn, a few minor contributions from the other Rn isotopes (i.e., ^{220}Rn and ^{219}Rn) should also be considered, especially as their activity may be decreasing over time. Therefore, before calculating the trend, we need to subtract the contributions from ^{220}Rn and ^{219}Rn and their daughters to the “total channel.” These, in turn, first have to be corrected for chance coincidence counts in the respective channels, as they are actually due to ^{222}Rn and should not be subtracted. Our calculation follows closely the approach outlined in Moore and Arnold (1996) and Garcia-Solsona et al. (2008), extending it to the “total” channel, resulting in a value of corrected “total” counts per minute ($Y_{\text{corr total}}$) for each counting cycle (10 min cycles in our case) in a 1000 min (or similar) counting period. From these data points, a linear regression over time (trend) is then obtained. The total counting period may be shortened, if high activities command shorter measurements.

The calculation starts with the determination of the chance coincidence count rate in the ^{220}Rn channel:

$$Y_{220} = \frac{(\text{cpm}_{\text{total}} - \text{cpm}_{220} - \text{cpm}_{219})^2 \times 0.01}{1 - (\text{cpm}_{\text{total}} - \text{cpm}_{220} - \text{cpm}_{219}) \times 0.01}$$

$$Y_{220}$$ expected count rate (counts per minute) due to chance coincidence events in the ^{220}Rn channel; $\text{cpm}_{\text{total}}$ measured count rate in the “total” channel; cpm_{220} measured count rate in the ^{220}Rn channel; cpm_{219} measured count rate in the ^{219}Rn channel.

The corrected count rate for the “^{220}Rn channel,” which is the fraction of the counts that can actually be attributed to ^{220}Rn, can then be calculated. The correction will increase as counting time elapses, as ^{222}Rn, and consequently, chance coincidence events in the “^{220}Rn channel” build up. The corrected ^{220}Rn count rate without chance coincidence contribution is calculated as

$$\text{corr}_{220} = \text{cpm}_{220} - Y_{220}$$
The term \(\text{corr}_{220} \) is, in turn, part of Eq. 3, which determines the chance coincidence fraction for the "219Rn channel."

\[
Y_{219} = \frac{(\text{cpm}_{\text{total}} - \text{corr}_{220} - \text{cpm}_{219})^2}{1 - (\text{cpm}_{\text{total}} - \text{corr}_{220} - \text{cpm}_{219})^2} \times 0.0000935
\]

\(Y_{219} \) expected cpm due to chance coincidence events in the "219Rn channel."

For the "219Rn channel," we do not only need to consider chance coincidence events (which are less likely due to the shorter opening time of the electronic gate), but we also have to consider that some 220Rn counts occur while the 219Rn gate is open, which is why the equation for final19 comprises an additional term compared with the calculation of cor19. The actual value for the constant (0.0255) in this equation will depend on the settings of the electronic gates. The 219Rn count rate without chance coincidence events and without 220Rn-related counts is calculated as

\[
\text{final}_{219} = \text{cpm}_{219} - Y_{219} - \text{corr}_{220} \times 0.0255
\]

Just like a fraction of 220Rn (and subsequent) decays is observed in the "219Rn channel," a fraction of 219Rn related decays is detected in the "220Rn channel," which is why we need to determine the final 220Rn count rate without chance coincidence events and without 219Rn-related counts:

\[
\text{final}_{220} = \frac{\text{corr}_{220} - (1.6 \times \text{corr}_{219})^2 \times 0.01}{1 - (1.6 \times \text{corr}_{219})^2 \times 0.01}
\]

With the value from Eqs. 4 and 5, we can finally correct the count rate in the "total channel" for events actually due to 219Rn and 220Rn, to have just 220Rn and subsequent counts. As each event in the 219Rn or 220Rn channels is associated with two counts in the "total channel," the respective values are multiplied by 2 to calculate the corrected total counts. The "total" count rate without 219Rn- and 220Rn-related counts or the count rate that can be attributed to 222Rn is calculated as

\[
\text{corr}_{\text{total}} = \text{cpm}_{\text{total}} - 2 \times \text{final}_{219} - 2 \times \text{final}_{220}
\]

This set of calculations is applied to each counting cycle to obtain series of values for 1000 min counting time. If there is 226Ra present in the sample, the count rate will increase over time. The set of cor\text{total} values, which represents the corrected counts from the "total channel," is used to calculate the slope of these counts over time. This slope is then a direct measure of the activity of 226Ra absorbed on the Mn fiber. It should be noted that these corrections have a minor effect on the overall quality of the 226Ra values, as the correction is only small, except when high 226Ra values are measured (>20 dpm of 226Ra per Mn-fiber). We provide a spreadsheet in Microsoft Excel format with this article, which allows performing the calculations from Eqs. 2-7 by pasting a raw RaDeCC spread sheet in the appropriate columns (see Web Appendix).

In the next step, we will calibrate the actual 226Ra activity on a Mn-fiber against the instrument-specific \(\text{corr}_{\text{total}} \) slope for different activities, using the values from Eq. 7.

Calibration

To calibrate the response of the system, a set of Mn fibers (25 g dry weight each) containing nominally 5, 10, 15, 25, and 50 dpm of 226Ra was prepared at Alfred-Wegener-Institute (AWI), Bremerhaven. From a stock solution containing 530 dpm g\(^{-1}\) 226Ra in 0.5 M HCl, the respective amounts were added to a glass beaker, and 200 mL ultrapure water was added so each Mn fiber could be entirely submerged. Before adding the Mn fiber, pH was raised to ~9 by adding sodium carbonate (Na\(_2\)CO\(_3\)), as monitored with a pH indicator strip. Then the Mn fiber was submerged in the spike solution for approximately 10 min. After taking out the fiber, it was squeezed dry and rinsed three times with ultrapure water, analogue to a sample. The resulting 226Ra calibration series on Mn fiber was transferred to regular cartridges as used for sampling and counting of short-lived Ra-isotopes, and stored dry (but not specifically sealed for gas loss).

We then analyzed each standard fiber in each counter of the Edinburgh 4-counter system, calculated cor\text{total} according to the equations outlined above for each measurement cycle (here 10 min), and the determined the resulting trend (slope) in cor\text{total} for each concentration on each counter. The increasing trend in cor\text{total} with increasing 226Ra concentrations (shown in Fig. 2) allows us to calculate the response of an individual system to a given amount of radium present on the fiber, or a specific calibration factor.

The result of the calibration for four different counters (University of Edinburgh system) with standards is shown in Fig. 2. For all detectors, an increase in 226Ra concentration on the Mn-fiber leads to a linear increase in the trend of cor\text{total}. This test resulted in similar calibration values for all Edinburgh systems: 0.000186, 0.000190, 0.000155, and 0.000141 cpm dpm\(^{-1}\) for the four detectors used here. These values agree reasonably well with the theoretical trend expected from the previous section (0.000213 cpm dpm\(^{-1}\)). After describing the methods in more detail, we will compare further experimental instrument responses to the theoretical value, using real samples that had been analyzed for 226Ra by an independent method.

Measurement and possible sources of error

For a measurement of 226Ra with the RaDeCC, the system is first flushed well with air to remove moisture and traces from previous measurements, then it is flushed with helium of at least industrial grade quality. The latter happens to remove...
any 222Rn that has built up from previous measurements. Then
the standard (or sample) on fiber with appropriate moisture
content (Sun and Torgersen 1998) is placed in a closed recircu-
lated helium stream according to Moore and Arnold (1996).
Counts are monitored in the “219Rn channel” (= 223Ra), the
“220Rn channel” (= 224Ra), and the “total channel,” in 10 min
cycles, for 1000 min.

It should be noted that three sources for systematic error
have to be considered. One is a loss of Rn (and He) during
counting. Such a leak is a problem for any Ra isotope mea-
surement on the RaDeCC counter, as Rn losses imply an
underestimation of the Ra results, and efficiencies in air differ
considerably from efficiencies in He (Moore 2008). During the
measurement, changes in gas flow rate are a good indicator for
gas loss. After the measurement, such an event can usually be
seen in the data as a clear break in the linear increase of total
counts (Fig. 3c).

Another problem (possibly encountered after determin-
ing cell efficiencies for 224Ra, or after counting high levels of 226Ra)
is a slowly decreasing background in the “total channel,” start-
ing from relatively high levels, presumably due to 212Pb/212Bi
daughter 212Po (from 224Ra), or supported 214Po (from 226Ra)
that has accumulated in the cell from a previous mea-
surement. Again, this problem can be identified in a deviation
from linearity in the 222Rn increase over time (Fig. 3d). The
half-life of 212Pb is 10.64 h, so it is recommended to wait for 1-2
in which y is the count rate corr$_{\text{total}}$, x is elapsed counting time,
b is the offset at x = 0, and m is the sample-specific slope
describing the increase over time (trend). The uncertainty in
m, s$_m$, is then the best description of uncertainty for the mea-
surement of 226Ra, rather than the correlation coefficient R^2.
Even with poor R^2, the trend m in the data is usually robust,
as the scatter leading to a lower R^2 is purely statistical in
nature, and a large number of cycles (typically n = 100) implies
that the regression does not depend very much on individual
values. This means that while we cannot predict very well a
specific value for an individual measurement cycle due to the
stochastic nature of radioactive decay, we can determine the

\[y = mx + b \]

Uncertainty calculation
As with all counting techniques, the uncertainty of the
measurement is, in first approximation, mainly determined as
a function of the number of counts. However, the results here
are determined through the trend of the “total” count rate
increase, rather than just the number of counts, and thus the
uncertainty of the results corresponds also to the uncertainty
associated to the trend.

We describe the linear trend in the data by a general equa-
tion
trend very reliably. From a practical perspective, we recommend the additional determination of the analytical uncertainty by measuring replicates of samples and standards, ideally reference materials as well.

Assessment
Determining the range of the method
To assess the applicability of the method to existing measurements, and to establish the range of suitable activities, we first chose a set of 223Ra/224Ra Mn fiber samples with existing independent 226Ra measurements (by γ-spectrometry) for comparison, covering a wide range of activities (2.4 to 2200 dpm) [details on most of the sampling sites and methodology can be found in Rodellas et al. (2012), Annett et al. (2013), Van Beek et al. (2010)]. In this sample set, samples were counted on different RaDeCC detectors, and the resulting trends have not been calibrated for different detector efficiencies, so we can compare the observed trends in $\text{corr}_{\text{total}}$ with the simplified theoretical value of 0.000213 cpm/dpm. The lack of a detector-specific calibration in the graph contributes to the observed scatter in the results. However, this can also be seen as a test for the robustness of the method.

We find that the relation between 226Ra from an independent analysis and the trend of $\text{corr}_{\text{total}}$ on the RaDeCC systems is strictly linear and quite close between 10 dpm and 2000 dpm/sample (see Fig. 4). In the log/log plot covering the full range of activities (Fig. 4, righthand panel), it can be seen that samples below 10 dpm have a less close correlation in this sample set, which is mainly due to the counting error, as counting intervals are often shorter than 1000 min for most of these samples, and it may in this case be reinforced by the absence of a detector-specific calibration and by including values from three different laboratories. However, the correlation is overall very satisfying, with $R^2 = 0.97$ for all values across all participating laboratories, with an average slope of 0.000188 $\text{corr}_{\text{total}}$/dpm (theoretical slope for 78% detector efficiency: 0.000213; one individual system actually up to 0.000230).

To investigate the statistical uncertainty in the 222Rn trend, we present the observed relative error from the dataset above in relation to the 226Ra concentration (Fig. 5).

\begin{align*}
\text{corr}_{\text{total}} &= 0.007741 \times x + 0.927 \\
S_m &= 0.000293 (3.8\%) \\
R^2 &= 0.877 \\
\text{corr}_{\text{total}} &= 0.0457 \times x + 3.203 \\
S_m &= 0.00134 (2.9\%) \\
R^2 &= 0.96 \\
\text{corr}_{\text{total}} &= 0.00364 \times x + 5.47 \\
S_m &= 0.00041 (11.3\%) \\
R^2 &= 0.15 \\
\text{corr}_{\text{total}} &= 0.002937 \times x + 7.028 \\
S_m &= 0.000859 (29.2\%) \\
R^2 &= 0.04
\end{align*}
We observe a general decrease of statistical uncertainty with increasing 226Ra activity, as expected. We find that values above 10 dpm have relative errors of less than 15% in this example. Uncertainties of less than 15% for even lower activities around 5 dpm suggest that it may be possible to obtain values with a certain precision for activities < 10 dpm in certain cases (well calibrated system; no influence from other isotopes; constant conditions).

Radium adsorption efficiency determination in the South Atlantic (GEOTrACES GA10E) and a GEOTrACES intercalibration sample

As an additional test for the new method, we applied the technique to a set of samples from the South Atlantic. This set of large-volume (approx. 100 L) samples of water was collected from the upper 400 m in a transect from Cape Town to Gough Island along the 40°S in the Atlantic Ocean during the British UK GEOTrACES cruise GA10E onboard RRS Discovery in 2010. The samples were passed through Mn-fiber at a flow rate <0.5 L/min to quantitatively extract the Ra, following Moore and Arnold (1996) and Moore (2008).

In parallel for 12 of the large-volume Ra samples reported here, 500 mL samples were taken, of which 200 mL were used to determine the 226Ra concentrations independently by isotope dilution on a multicollector-ICP-MS at Oxford University, following the methods in Hsieh and Henderson (2011). The results are reported in Hsieh et al. (in prep.). For the remaining samples without an actual MC-ICP-MS value, we have used interpolated estimates in the calculation (as indicated in Table 1), as variations in 226Ra in this location can be expected to be relatively small. Therefore, we can compare the results on the 226Ra concentrations obtained from each of the large-volume Mn-fiber samples with those independently determined, which make them a suitable set to test the method outlined in this work. With typical activities around 10 dpm·100 kg$^{-1}$ 226Ra for near surface waters in this part of the South Atlantic (Ku and Lin 1976), and sample volumes of around 100 kg, most samples have an absolute activity of around 10 dpm, placing them at the lower end of the suitable activity range, and elevated uncertainties are to be expected. The data are presented in Table 1.

We only show the 16 samples that were counted twice, once shortly after sampling on board, and a second time when back in the home lab (see Table 1). Short-lived Ra isotopes were low, even shortly after sampling. When averaging the
two counts, we determine an average recovery with the RaDeCC method of 105 ± 20% compared with MC-ICP-MS, demonstrating a generally good agreement even for relatively low activities. We also find that the error associated with individual 226Ra determinations by the ingrowth method can be decreased by including replicate analyses.

In addition to the examples above, we applied the new method to an existing intercalibration sample, station 3 from Charette et al. (2012). The available amount was very low, 8.34 kg, which were extracted on Mn fiber. The 226Ra activity of the sample is reported in Charette et al. (2012) as 11.6-24.3 dpm/100 kg (95% Conf. Int.), and the ICP-MS value of the sample is 14.6 ± 0.3 dpm/100 kg. Assuming that the existing MC-ICP-MS measurement is the best estimate, we only had 1.22 dpm 226Ra available for the test, which is considerably below the proposed working range of the method. The evaluation of two 1000 min runs yielded 26.6 ± 5.7 (1 s) and 27.1 ± 7.7 (1 s) dpm/100 kg, respectively. Given the very low absolute sample amount below the specification of the method, we consider this a reasonable agreement.

Discussion and comments

Our results from the calibration of four detectors and several actual examples of environmental samples from three different laboratories confirm that the ingrowth of 222Rn as measured in the closed system of a RaDeCC-system is a reliable measure for the activity of 226Ra on Mn fiber. We find that the method works well in a range from 10-2000 dpm. The measurement of slightly lower activities might be achieved by increasing the number of replicates, or by choosing longer measurement cycles. Uncertainties for individual measurements are in the order of 10% to 20% for activities from 10-20 dpm, but replicate analyses of the same sample allow reducing the uncertainty further. At the current stage of method development, sample volumes for a typical coastal environment with 10 dpm/100 kg 226Ra should be not less than 100 L. The main advantage of the method is its simplicity, combined with the fact that an analysis of 223Ra and 224Ra with the RaDeCC system can be evaluated for 226Ra, without requiring a modification of the setup. Moreover, the data record of measurements previously done with the RaDeCC

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>sample mass [kg]</th>
<th>MC-ICP-MS on discrete 200 mL sample</th>
<th>RaDeCC - 1st run</th>
<th>RaDeCC - 2nd run</th>
<th>RaDeCC Average 2 runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>105</td>
<td>8.3 ± 0.2</td>
<td>12.3 ± 1.2</td>
<td>148</td>
<td>8.9 ± 1.0</td>
</tr>
<tr>
<td>St1_fish</td>
<td>107</td>
<td>8.3 ± 0.2</td>
<td>8.7 ± 1.4</td>
<td>105</td>
<td>12.2 ± 1.0</td>
</tr>
<tr>
<td>St1_50m</td>
<td>89</td>
<td>8.6 ± 0.2</td>
<td>10.7 ± 0.8</td>
<td>125</td>
<td>6.1 ± 0.7</td>
</tr>
<tr>
<td>St1_100m</td>
<td>102</td>
<td>9.4 ± 0.2</td>
<td>5.5 ± 0.9</td>
<td>58</td>
<td>7.7 ± 0.9</td>
</tr>
<tr>
<td>St1_400m</td>
<td>104</td>
<td>11.6 ± 0.2</td>
<td>7.9 ± 1.0</td>
<td>68</td>
<td>9.1 ± 1.1</td>
</tr>
<tr>
<td>St2_fish</td>
<td>116</td>
<td>8.3 ± 0.2</td>
<td>10.7 ± 0.9</td>
<td>129</td>
<td>9.4 ± 0.7</td>
</tr>
<tr>
<td>St2_50m</td>
<td>68</td>
<td>8.2 ± 0.2</td>
<td>11.5 ± 1.1</td>
<td>140</td>
<td>7.7 ± 1.1</td>
</tr>
<tr>
<td>St2_100m</td>
<td>92</td>
<td>8.4 ± 0.2</td>
<td>11.3 ± 1.1</td>
<td>135</td>
<td>9.5 ± 1.1</td>
</tr>
<tr>
<td>St2_400m</td>
<td>92</td>
<td>9.3 ± 0.2</td>
<td>12.8 ± 1.3</td>
<td>138</td>
<td>9.4 ± 1.0</td>
</tr>
<tr>
<td>Super1Fish</td>
<td>89</td>
<td>9.1 ± 0.2</td>
<td>9.3 ± 1.0</td>
<td>102</td>
<td>8.2 ± 0.7</td>
</tr>
<tr>
<td>St4_fish</td>
<td>106</td>
<td>9.2 ± 0.2</td>
<td>12.8 ± 1.2</td>
<td>139</td>
<td>7.3 ± 0.8</td>
</tr>
<tr>
<td>St4_700m</td>
<td>92</td>
<td>13.4 ± 0.3</td>
<td>10.3 ± 1.2</td>
<td>77</td>
<td>9.7 ± 1.1</td>
</tr>
<tr>
<td>St5_fish</td>
<td>94</td>
<td>9.3 est</td>
<td>12.4 ± 1.4</td>
<td>138</td>
<td>8.2 ± 0.9</td>
</tr>
<tr>
<td>St5_50m</td>
<td>75</td>
<td>11 est</td>
<td>10.2 ± 1.3</td>
<td>92</td>
<td>7.6 ± 0.9</td>
</tr>
<tr>
<td>St5_400m</td>
<td>100</td>
<td>11 est</td>
<td>10.7 ± 1.1</td>
<td>97</td>
<td>13.8 ± 1.4</td>
</tr>
<tr>
<td>St7_Fish</td>
<td>104</td>
<td>9 est</td>
<td>8.8 ± 0.8</td>
<td>98</td>
<td>11.3 ± 1.0</td>
</tr>
</tbody>
</table>

| | Av. 112 | Av. 97 | Av. 105 |
| | ± 1 s 29 | ± 1 s 23 | ± 1 s 20 |
system (determination of ^{223}Ra, ^{224}Ra, or ^{228}Th), allow re-evaluating the existing data to obtain information on ^{226}Ra at no extra costs. It should be noted that the principle of our evaluation can be extended to other parent-daughter radionuclide systems, when waiting for a secular equilibrium is inconvenient, e.g., to ^{228}Ra via ^{228}Th ingrowth.

We do not believe that the method presented here is a replacement for existing more precise methods, but a valuable complementation of the analytical tools for ^{226}Ra. For laboratories with an existing RaDeCC-facility, a very simple assessment of the new method can be conducted by re-evaluating existing analytical records with the provided spreadsheet, and assuming a slope ^{226}Ra conversion factor of 0.00019. Quality checks of the sample runs (no gas leaks, no elevated background at beginning of measurement, low ^{223}Ra and ^{224}Ra) are essential for the successful use of the method. The precision can then be further improved by determining individual efficiencies for the systems, and by measuring replicates.

The method is suitable for determining Mn fiber adsorption efficiencies, if a sufficient number of replicate analyses of the same sample are performed. The values obtained are of adequate precision to decide how to proceed analytically, e.g., determination of required sample volumes for a more precise γ-spectrometric or mass-spectrometric analysis. The method also has a large potential for monitoring purposes in remote areas, as it has very modest requirements for infrastructure. Basically, a sufficiently stable electricity supply, and the availability of helium (industrial quality) are sufficient to set up the system.

References

Rodellas, V., and others. 2012. Quantifying groundwater dis-
charge from different sources into a Mediterranean wetland by using Rn-222 and Ra isotopes. J. Hydrol. 466:11-22 [doi:10.1016/j.jhydrol.2012.07.005].

Submitted 8 April 2013
Revised 6 September 2013
Accepted 3 November 2013