Comparative analysis of atlas-based and manual prefrontal brain parcellation in an ageing cohort

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Comparative Analysis of Atlas-Based and Manual Prefrontal Brain Parcellation in an Ageing Cohort

Benjamin Arribasalá1,2,*, Simon Cox1,2, Sarah MacPherson2,3, Alasdair MacLullich2,4,5, Karen Ferguson2,5, Natalie Royle1,2,7, Maria Valdés Hernández2,7, Mark Bastin1,2,7, Ian Deary2,2,7, Joanna Wardlaw1,2,7

1Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
2Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; 3Department of Psychology, University of Edinburgh, UK; 4Endocrinology Unit, University of Edinburgh, UK; 5Genetic Medicine Unit, University of Edinburgh, Edinburgh, UK; 6Clinical Research Imaging Centre, University of Edinburgh, UK; 7Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, UK

* Joint first authors.

Introduction
- Regions of interest (ROI) definition is an important step in the analysis of many MR images.
- Manual Definition of Region of Interest
 - Time Consuming
 - User Bias and Issues with Reproducibility
- Atlas based Method
 - Requires standardization to normalise variation in brain sizes and shapes
 - Non-linear registration matches boundaries better than linear
 - Single atlas cannot account for anatomical diversity
 - Multi-atlases1 performs well in young adults

Purpose
- To compare the performance of both single- and multi-atlas parcellation with manual segmentation using brain MRI of older men
- Also to investigate the choice of atlas(es) selection for both single- and multi-atlas approaches

Manual Segmentation
- Frontal gyri segmented anterior to the coronal appearance of precentral sulcus.

Single Atlas Parcellation
- Representative atlases selected based on:
 - Study-based ageing brains
 - Intracranial volume (ICV)
 - Total Brain volume (TBV)
 - Frontal lobe volume (lobe)
 - Non-study-based brain
 - Young male adult
 - Atlases transformation to target brain used ART6

Results
- The atlas based on TBV performed best of the single atlases
- For multi-atlas Correlation and mutual information gave equal performance
- Multi-atlas performed better than single atlas
- CSF removal improved performance

Challenge
- Age-related changes pose a significant challenge to any automatic method2
 - E.g. Atrophy
 - Skul Thickening
 - Lessons
- Prefrontal brain
 - High degree of inter-subject sulcal pattern variation
 - Highly susceptible to age-related changes e.g. atrophy
- Performance of atlas based parcellation in ageing has not been investigated

Subjects
- Ninety scans of men selected from 700 members of Lothian Birth Cohorts 19365
- Community dwelling, Mean age 72.7+/-0.7 years
- Non-demented, Non depressed and Not taking any anti-depressant
- T1W scan (resolution 1x1x1.3 mm3), 1.5 T GE scanner

Multi Atlas Parcellation
- Atlases selected based on
 - Normalised Mutual Information (mutual)
 - Normalised correlation coefficient (corr)
 - Cross validation based on leave-one-out method
- Atlases transformation to target brain used ART5
- Atlases combination used image fusion6
- Post-processed to remove CSF

Visual Assessment
- Sagittal (top row) and coronal (bottom row) planes.
- From left to right, manual, single-, multi- and multi-atlas after CSF removal
- For single atlas, local patterns of gyrification were not well-matched
- For multi-atlas, prior to CSF removal, voxels in lateral (orange arrows) and medial aspects (orange box) were classified as brain tissue.
- Single-atlas, representative brain selected based on the total brain tissue volume
- Multi-atlas, atlases selection used normalised correlation coefficient

Conclusion
- Atlas-based parcellation method performed reasonably well in the ageing men. However, brain shape and particularly the effects of age-related atrophy could reduce its performance, hence there is need for visual assessment and some manual editing. The performance of any parcellation scheme should be assessed, not only by volumetrically, but also visually and by measure of spatial concordance. Future work should investigate incorporating atrophy metric into atlas selection

References
1. Heckemann RA et al., Neuroimage 2010, 51(1):221-227
2. Caballero M et al., Computer methods and programs in biomedicine 2011
3. Diary et al., BMC Genet 2007, 7(28)
4. Wardlaw et al., Int. J. Stroke, 2011