Short-term memory binding in mild cognitive impairment

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Short-term memory binding in Mild Cognitive Impairment

Sara Fernández-Guinea1,2, Mario A Parra3, Anna Frank2, Mª Luisa Delgado1, and Sergio Della Sala3

1 Complutense University of de Madrid
2 IDIPAZ
3 Human Cognitive Neuroscience and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK.

We showed that short-term memory (STM) binding is sensitive to sporadic and familial Alzheimer’s disease (AD) but is not affected by healthy ageing, chronic depression in the elderly or other forms of dementia. STM binding deficits were also observed in individuals with a genetic susceptibility for AD in the preclinical stages. Hence, we aim to investigate longitudinally individuals with Mild Cognitive Impairment (MCI) using STM binding tasks. Here we report on preliminary cross-sectional results. A comprehensive neuropsychological test battery and a visual STM task were given to 21 MCI patients and 20 controls. The STM task required participants to recognise changes across two consecutive arrays presenting either single features (colour or shape) or feature bindings. The MCI group performed significantly poorer than controls on standard tests of memory, attention and on the binding condition of the STM task, but not on single feature conditions. Performance on the binding task and on standard memory tests did not correlate. Eight MCI patients clearly performed outwith the range of normality in the binding task. However, they did not significantly differ from the other 13 MCI patients in disease severity or demographic and neuropsychological variables. Six patients with binding impairments showed a multiple domain profile whereas ten patients with a preserved binding function showed an amnesic profile [Chi-square = 5.45, \(p = 0.020\)]. These results suggest that (1) the binding task is assessing a function different from other memory tests and that (2) STM binding may be differentially impaired in MCI subgroups.