"Demanding an Explanation: Implicit Causality Biases in Discourse Interpretation"

Citation for published version:
Rohde, H & Kehler, A 2008, "Demanding an Explanation: Implicit Causality Biases in Discourse Interpretation" CUNY 2008, South Carolina, United States, 13/03/08 - 15/03/08.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Demanding an Explanation: Implicit Causality Biases in Discourse Interpretation
Hannah Rohde & Andrew Kehler

Abstract

Problem: Previous passage-completion studies report strong biases regarding who will be mentioned next following implicit causality (IC) verbs with a 'because' prompt. However, these biases are reduced/eliminated with a full-stop prompt.

1. Goal
To clarify the effects of IC biases on discourse interpretation by distinguishing (i) next-mention biases and (ii) biases toward upcoming coherence relations.

2. Previous work on Implicit Causality
Passage completions: strong IC bias to particular referent with 'because' prompt (Caramazza, Grober, Garvey, Yates 1974; McKoon, Greene, Ratcliff 1993, inter alia).

(1) a. IC-1 John annoyed Mary because ___________ . [bias to NP1-John]
b. IC-2 John scolded Mary because ___________ . [bias to NP2-Mary]
c. Non-IC John babysat Mary because ___________ . [mixed biases]

However, next-mention bias reduced/eliminated with full stop prompt (Au 1986, inter alia)

(2) a. IC-1 John annoyed Mary ___________ . [bias to NP1-John]
b. IC-2 John scolded Mary ___________ . [bias to NP2-Mary]
c. Non-IC John babysat Mary. ___________ . [mixed biases]

What role does 'because' have?
- Modifying salience of event participants directly (Stevenson, Knott, Overlander, & McDonald 2000)
- Signaling an Explanation coherence relation (Hobbs 1979, Kehler 2002)

3. Using coherence to modulate next-mention biases
We generalize Rohde, Kehler, & Elman’s (2007) pronoun model to next mention: Biases towards upcoming coherence relations (CRs) combine with biases for which event participant will be mentioned again, conditioned on coherence

(3) \(P(\text{next-mention} = \text{referent}) = \sum P(\text{CR}) P(\text{next-mention} = \text{referent}|\text{CR}) \)

\[P(\text{CR}=\text{Explanation}) = 1 \text{ with 'because'}, \text{ but } P(\text{CR}=\text{Explanation}) < 1 \text{ in full stop} \]

Next-mention bias, \(P(\text{next-mention} | \text{Explanation}) \), is predicted to remain constant across Explanations – with both 'because' and full stop Explanations.

4. Story continuation experiment
2 x 3 design: verb type (IC vs. Non-IC) x continuation type (full stop vs. because vs. dialog prompt – dialog results not discussed here)

Materials: 40 IC verbs (20 IC-1, 20 IC-2) and 40 Non-IC verbs

Evaluation: judges annotated for next mention & coherence relation

5. Results
Next-mention biases were statistically indistinguishable when only 'because' prompts and freely generated Explanations were considered

\(F(1,70)=0.8822, p<0.3026; F(1,70)=0.8822, p<0.3026 \)

Because next-mention bias reduced/eliminated with full stop prompt

6. IC-1 Results

\[P(\text{next-mention} = \text{NP1} | \text{'because'}) \approx P(\text{next-mention} = \text{NP1} | \text{Explanation}) \]

7. IC-2 Results

Again, next-mention biases statistically indistinguishable when only Explanations are considered 'because' (or freely generated)

\(F(1,36)=1.4598, p<0.2348; F(1,36)=1.4598, p<0.2348 \)

8. Non-IC Results

Again, next-mention biases statistically indistinguishable when only Explanations are considered 'because' (or freely generated)

\(F(1,61)=0.982, p<0.3438; F(1,61)=0.982, p<0.3438 \)

9. A new IC bias

IC verbs create an expectation regarding the direction the discourse is likely to take – specifically a bias towards an upcoming Explanation

Findings for full stop prompt: IC verbs yield more Explanation continuations than do Non-IC verbs

10. Conclusions

Like Rohde et al.’s results, overall statistics reveal a consistent system of stronger biases once coherence relations are conditioned on.

In contrast to previous results:
- Connective alone does not affect referent salience – mediated by coherence
- There are actually two strong biases that differentiate IC and Non-IC verbs:
 - \(P(\text{CR}=\text{Explanation}) \) is high for IC-1 and IC-2
 - \(P(\text{next-mention} = \text{NP1} | \text{Explanation}) \) is high for IC-1 and low for IC-2

The presence of a second bias had gone unnoticed because previous studies had not categorized their data by coherence.

References

Contact: hannah@ling.ucsd.edu