Automatic Analysis of Plot for Story Rewriting

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of EMNLP 2004

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Automatic Analysis of Plot for Story Rewriting

Abstract

A method for automatic plot analysis of narrative texts that uses components of both traditional symbolic analysis of natural language and statistical machine-learning is presented for the story rewriting task. In the story rewriting task, an exemplar story is read to the pupils and the pupils rewrite the story in their own words. This allows them to practice language skills such as spelling, diction, and grammar without being stymied by content creation. Often the pupil improperly recalls the story. Our method of automatic plot analysis enables the tutoring system to automatically analyze the student’s story for both general coherence and specific missing events.

1 Introduction

StoryStation is an intelligent tutoring system created to provide personalized attention and detailed feedback to children ages 10-12 on their writing (Robertson and Wiemar-Hastings, 2002). Writing is viewed as a skill-based task, with skills being elements of writing such as spelling, diction, and plot development. Each writing skill is associated with an animated agent that provides online help. Evaluations of StoryStation show that children enjoy the personalized encouragement and constructive comments that StoryStation provides (Robertson and Cross, 2003). StoryStation was designed by researchers in conjunction with two teachers and a group of students. However, both students and teachers indicated StoryStation would be significantly improved if it were enhanced with an agent that could give feedback about the plot of a story. Here we describe how techniques from symbolic natural language processing and statistical machine-learning were used to tackle the problem of automated plot analysis for StoryStation.

2 The Story Rewriting Task

In the story rewriting task, pupils rewrite a story in their own words, allowing them to focus on their writing ability instead of plot formulation. This task is currently used in Scottish schools and thus it was chosen to be the first feature of the plot analysis agent. We collected a corpus of 103 stories rewritten by children from classes at primary schools in Scotland. Pupils were told a story, an exemplar story, by a storyteller and were asked to rewrite the story in their own words. The automated plot analysis program must be able to give a general rating of the quality of the rewritten story’s plot and be able to determine missing or incorrect events. The general rating can be used by the teacher to find out which pupils are in need of attention, while the more specific details can be used by an animated agent in StoryStation to remind the student of specific events and characters they have forgotten or misused.

3 Plot Ratings

The stories were rated for plot by three different raters. A story-teller (Rater B) ranked all of the stories. Two others (Rater A, a teacher, and Rater C) ranked the stories as well, although Rater A ranked only half. The following scale, devised by a teacher with over forty years of experience, was used.

1. Excellent: An excellent story shows that the reader understands the “point” of the story and should demonstrate some deep understanding of the plot. The pupil should be able to retrieve all the important links and, not all the details, but the right details.

2. Good: A good story shows that the pupil was listening to the story, and can recall the main

1The exemplar story used in our corpus was “Nils’ Adventure,” a story from “The Wonderful Adventures of Nils” (Lagerlof, 1907).
<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Number of Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Excellent)</td>
<td>0.175</td>
<td>18</td>
</tr>
<tr>
<td>2 (Good)</td>
<td>0.320</td>
<td>33</td>
</tr>
<tr>
<td>3 (Fair)</td>
<td>0.184</td>
<td>19</td>
</tr>
<tr>
<td>4 (Poor)</td>
<td>0.320</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 1: Distribution of Story Ratings

events and links in the plot. However, the pupil shows no deeper understanding of the plot, which can often be detected by the pupil leaving out an important link or emphasizing the wrong details.

3. Fair: A fair story shows that the pupil is missing more than one link or chunk of the story, and not only lacks an understanding of the “point” but also lacks recall of vital parts of the story. A fair story does not really flow.

4. Poor: A poor story has definite problems with recall of events, and is missing substantial amount of the plot. Characters will be misidentified and events confused. Often the child writes on the wrong subject or starts off reciting only the beginning of the story.

Rater B and Rater A had an agreement of 39% while Rater B and Rater C had an agreement of 77%. However, these numbers are misleading as the rating scale is ordinal and almost all the disagreements were the result of grading a story either one rank better or worse. In particular Rater A usually marked incomplete stories as poor while the other raters assigned partial credit. To evaluate the reliability of the grades both Cronbach’s α and Kendall’s τ_b were used, since these statistics take into account ordinal scales and inter-rater reliability. Between Rater A and B there was a Cronbach’s α statistic of .86 and a Kendall’s τ_b statistic of .72. Between Rater B and C there was a Cronbach’s α statistic of .93 and Kendall’s τ_b statistic of .82. These statistics show our rating scheme to be fairly reliable. As the most qualified expert to rate all the stories, Rater B’s ratings were used as the gold standard. The distribution of plot ratings are given in Table 1.

4 A Minimal Event Calculus

The most similar discourse analysis program to the one needed by StoryStation is the essay-grading component of “Criterion” by ETS technologies (Burstein et al., 2003), which is designed to annotate parts of an essay according to categories such as “Thesis,” “Main Points,” “Support,” and “Conclusion.” Burstein et al. (2003) uses Rhetorical Structure Theory to parse the text into discourse relations based on satellites and nuclei connected by rhetorical relations. Moore and Pollack (1992) note that Rhetorical Structure Theory conflates the informational (the information being conveyed) and intentional (the effects on the reader’s beliefs or attitudes) levels of discourse. Narratives are primarily informational, and so tend to degenerate to long sequences of elaboration or sequence relations. Since in the story rewriting task the students are attempting to convey information about the narrative, unlike the primarily persuasive task of an essay, our system focuses on the informational level as embodied by a simplified event calculus. Another tutoring system similar to ours is the WHY physics tutoring system (Rose et al., 2002).

We formulate only three categories to describe stories: events, event names, and entities. This formulation keeps the categories from being arbitrary or exploding in number. Entities are both animate characters, such as “elves” and “storks,” and inanimate objects like “sand” and “weather.” Nouns are the most common type of entities. Events are composed of the relationships among entities, such as “the boy becomes an elf,” which is composed of a “boy” and “elf” interacting via “becoming,” which we call the event name. This is because the use of such verbs is an indicator of the presence of an event in the story. In this manner events are relationships labeled with an event name, and entities are arguments to these relationships as in propositional logic. Together these can form events such as become(boy,elf), and this formulation maps partially onto Shanahan’s event calculus which has been used in other story-understanding models (Mueller, 2003). The key difference between an event calculus and a collection of propositions is that time is explicitly represented in the event calculus.

Each story consists of a group of events that are present in the story, $e_1\ldots e_h$. Each event consists of an event name, a time variable t, and a set of entities arranged in an ordered set $n_{1} \ldots n_{g}$. An event must contain one and only one event name. The event names are usually verbs, while the entities tend to be, but are not exclusively, nouns. Time is made explicit through a variable t. Normally, the Shanahan event calculus has a series of predicates to deal with relations of achievements, accomplishments, and other types of temporal relations (Shanahan, 1997), however our calculus does not use these since it is difficult to extract these from ungrammatical raw text automatically. A story’s temporal order is a partial ordering of events as denoted by their time variable t. When incorporating a set of entities
into an event, a superscript is used to keep the enti-
ties distinct, as \(n_3^1 \) is entity 1 in event 3. An entity
may appear in multiple events, such as entity 1 ap-
ppearing in event 3 \((n_3^1) \) and in event 5 \((n_3^5) \). The plot
of a story can then be considered an event structure
of the following form if it has \(h \) events:

\[
e_1(t_1, (n_1^1, n_1^2, ... n_1^r)),..., e_h(t_h, (n_h^2, n_h^4, ... n_h^c))
\]

Where time \(t_1 \leq t_2 \leq ... t_h \). An example from a
rewritten story is “Nils found a coin and he walked
round a sandy beach. He talked to the stork. Asked
a question.” This is represented by an event struc-
ture as:

\[
\text{find}(t = 1(Nils, coin)), \\
\text{walk}(t = 1, (Nils, sand, beach)), \\
\text{talk}(t = 2, (stork, Nils)), \\
\text{ask}(t = 3, \text{(question)})
\]

Note that the rewritten stories are often ungram-
matical. A sentence may map onto one, multiple, or
no events. Two stories match if they are composed
of the same ordering of events.

5 Extracting the Event Calculus

The event calculus can be extracted from raw text
by layering NLP modules using an XML-based
pipeline. Our main constraint was that the text of the
pupil was rarely grammatical, restricting our choice
of NLP components to those that did not require a
correct parse or were in any other ways dependent
on grammatical sentences. At each level of process-
ing, an XML-enabled natural language processing
component can add mark-up to the text, and use any
mark-up that the previous components made. All
layers in the pipeline are fully automatic. For our
pipeline we used LT-TTT (Language Technology
Text Tokenization Toolkit) (Grover et al., 2000).

Once words are tokenized and sentence boundaries
detected by LT-TTT, LT-POS tags the words using the
Penn Treebank tag-set without parsing the senten-
ces. While a full parse could be generated by a
statistical parser, such parses would likely be incor-
correct for the ungrammatical sentences often gener-
ated by the pupils (Charniak, 2000). Pronouns are
resolved using a cascading rule-based approach di-
rectly inspired by the CogNIAC algorithm (Bal-
dwin, 1997) with two variations. First, it resolves in
distinct cascades for singular and then plural pron-
nouns. Second, it resolves using only the Cog-
NIAC rules that can be determined using Penn Tree-
bank tags. The words are lemmatized using an aug-
mented version of the SCOL Toolset and sentences
are chunked using the Cass Chunker (Abney, 1995).

There is a trade-off between this chunking approach
that works on ungrammatical sentences and one that
requires a full parse such as those using dependency
grammars. The Cass Chunker is highly precise,
but often inaccurate and misses relations and enti-
ties that are not in a chunk. In its favor, those tu-
ples in chunks that it does identify are usually cor-
rect. SCOL extracts tuples from the chunks to de-
determine the presence of events, and the remaining
elements in the chunk are inspected via rules for enti-
ties. Time is explicitly identified using a variation of
the “now point” algorithm (Allen, 1987). We map
each event’s time variable to a time-line, assuming
that events occur in the order in which they appear
in the text. While temporal ordering of events is
hard (Mani and Wilson, 2003), given that children
of this age tend to use a single tense throughout the
narrative and that in narratives events are presented
in order (Hickmann, 2003), this simple algorithm
should suffice for ordering in the domain of chil-
dren’s stories.

6 Plot Comparison Algorithm

Since the story rewriting task involves imperfect re-
call, story events will likely be changed or left out
by the pupil. The story rewriting task involves the
students choosing their own diction and expressing
their own unique mastery of language, so variation
in how the fundamental elements of the story are
rewritten is to be expected. To deal with these is-
issues, an algorithm had to be devised that takes the
event structure of the rewritten story and compares
it to the event structure of the exemplar story, while
disregarding the particularities of diction and gram-
mar. The problem is one of credit allocation for the
similarity of rewritten events to the exemplar event.
The words used in the events of the two story mod-
els may differ. The exemplar story model might
use the event \(\text{see}(Nils, stork) \), but a rewritten story
may use the word “bird” instead of the more precise
word “stork.” However, since the “bird” is refer-
ing to the stork in the exemplar story, partial credit
should be assigned. A plot comparison algorithm
was created that uses abstract event calculus repre-
sentations of plot and the text of the rewritten story,
taking into account temporal order and word simi-
larity. The exemplar story’s event structure is cre-
ated by applying the event extraction pipeline to the
storyteller’s transcript.

The Plot Comparison Algorithm is given in Fig-
ure 1. In the pseudo-code, \(E \) of size \(h \) and \(R \) of size
\(j \) are the event structures of the exemplar story and
rewritten story respectively, with the names of each
of their events denoted as \(e \) and \(r \). The set of entities
of each event are denoted as \(N_e \) and \(N_r \) respectively.
\(T \) is the lemmatized tokens of the rewritten story’s

due space limitations, we only display selected events from the transcript and their most likely match from the rewritten story in Figure 2. The output of the feature set would be the concatenation in order of every value of f_c.

The Plot Comparison Algorithm essentially iterates through the exemplar story looking for matches of the events in the rewritten story. To find if two events are in or out of order the rewritten story has a “now point” that serves as the beginning of its iteration. Each event of the event structure of the exemplar story is matched against each event of the rewritten story starting at the “now point” and using the exact text of the event name. If that match fails a looser match is attempted by giving the event names of the rewritten story to WordNet and seeing if a match to the resultant synset succeeds (Fellbaum, 1998). If either match attempt succeeds, the algorithm attempts to match entities in the same fashion and the “now point” of the rewritten story is incremented. Thus the algorithm does not looks back in the rewritten story for a match. If the event match fails, one last attempt is made by checking the event name or entity against every lemmatized token in the entire rewritten text. If this fails, a failure is recorded. The results of the algorithm can be used as a feature set for machine-learning. The event calculus extraction pipeline and the Plot Comparison Algorithm can produce event calculus representations of any English text and compare them. They have been tested on other stories that do not have a significant corpus of rewritten stories. The number of events for an average rewritten story in our corpus was 26, with each event having an average of 1 entity.

Included in Figure 2 is sample output from our algorithm given the exemplar story model e_a and a rewritten story r_b whose text is as follows: Nils took the coin and tossed it away, cause it was worthless. A city appeared and so he walked in. Everywhere was gold and the merchant said Buy this Only one coin Nils has no coin. So he went to get the coin he threw away but the city vanished just like that right behind him. Nils asked the bird Hey where the city go? Let’s go home.

Due to space limitations, we only display selected events from the transcript and their most likely match from the rewritten story in Figure 2. The output of the feature set would be the concatenation in order of every value of f_c.

<table>
<thead>
<tr>
<th>e_a</th>
<th>r_b</th>
<th>f_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>throw(Nils, coin)</td>
<td>toss(coin)</td>
<td>2, 3, 1</td>
</tr>
<tr>
<td>see(Nils, city)</td>
<td>appear(city)</td>
<td>0, 3, 3</td>
</tr>
<tr>
<td>enter(Nils, city)</td>
<td>walk(Nils)</td>
<td>0, 3, 3</td>
</tr>
<tr>
<td>ask(Nils, merchant)</td>
<td>say(merchant)</td>
<td>0, 3, 3</td>
</tr>
<tr>
<td>say(Nils)</td>
<td>say(merchant)</td>
<td>1, 3</td>
</tr>
<tr>
<td>leave(Nils)</td>
<td>go(Nils)</td>
<td>2, 1</td>
</tr>
<tr>
<td>disappear(city)</td>
<td>vanish(city)</td>
<td>2, 1</td>
</tr>
<tr>
<td>inquire(Nils, stork)</td>
<td>ask(Nils, bird)</td>
<td>2, 1, 2</td>
</tr>
<tr>
<td>fly(stork)</td>
<td>go(home)</td>
<td>0, 3</td>
</tr>
</tbody>
</table>

Figure 2: Example of Plot Algorithm

7 Learning the Significance of Events

Machine-learning is crucial to our experiment, as it will allow our model to discriminate what events and words in a rewritten story are good predictors of plot quality as rated by a human expert. We have restricted our feature set to the results of the Plot Comparison Algorithm and LSA scores, as we describe below. Other possible features, such as the grammatical correctness and the number of conjunctives, are dealt with by other agents in StoryStation. We are focusing on plot recall quality as opposed to general writing quality. Two different
machine-learning algorithms with differing assumptions were used. These are by no means exhaustive of the options, and extensive tests have been done with other algorithms. Further experiments are needed to understand the precise nature of the relations between the feature set and machine learning algorithms. All results were created by ten-fold cross validation over the rated stories, which is especially important given our small corpus size.

7.1 Nearest Neighbors using LSA

We can classify the stories without using the results of the Plot Comparison Algorithm, and instead use only their statistical attributes. Latent Semantic Analysis (LSA) provides an approximation of “semantic” similarity based on the hypothesis that the semantics of a word can be deduced from its context in an entire document, leading to useful coherency scores when whole documents are compared (Foltz et al., 1998). LSA compares the text of each rewritten story in the corpus for similarity to the transcript of the exemplar story in a subspace produced by reducing the dimensionality of the TASA 12 grade USA reading-level to 200. This dimensionality was discovered through experimentation to be our problem’s optimal parameters for LSA given the range of choices originally used by Landauer (1997). The stories can be easily classified by grouping them together based on LSA similarity scores alone, and this technique is embodied in the simple K-Nearest Neighbors (K-NN) learner. K-NN makes no parametric assumptions about the data and uses no formal symbolic features other than an LSA similarity score. For K-NN $k = 4$ gave the best results over a large range of k, and we expect this k would be ideal for stories of similar length.

As shown in Table 2, despite its simplicity this algorithm performs fairly well. It is not surprising that features based primarily on word distributions such as LSA could correctly discriminate the non-poor from the poor rewritten stories. Some good rewritten stories closely resemble the exemplar story almost word for word, and so share the same word distribution with the exemplar story. Poor rewritten stories usually have little resemblance to the exemplar story, and so have a drastically different word distribution. The high spread of error in classifying stories is shown in the confusion matrix in Table 3. This leads to unacceptable errors such as excellent stories being classified as poor stories.

7.2 Hybrid Model with Naive Bayes

By using both LSA scores and event structures as features for a statistical machine learner, a hybrid model of plot rating can be created. In hybrid models a formal symbolic model (the event calculus-based results of a Plot Comparison Algorithm) enters a mutually beneficial relationship with a statistical model of the data (LSA), mediated by a machine learner (Naive Bayes). One way to combine LSA similarity scores and the results of the event structure is by using the naive Bayes (NB) machine learner. NB makes the assumptions of both parametrization and Conditional Independence.

The recall and precision per rank is given in Table 4, and it is clear that while no stories are classified as excellent at all, the majority of good and poor stories are identified correctly. As shown by the confusion matrix in Table 5, NB does not detect excellent stories and it collapses the distinction between good and excellent stories. Compared to K-NN with LSA, NB shows less spread in its errors, although it does confuse some poor stories as good and one excellent story as fair. Even though it mistakenly classifies some poor stories as good, for many teachers this is better than misidentifying a good story as a poor story.

The raw accuracy results over all classes of the machine learning algorithms are summarized in Table 6. Note that average human rater agreement is the average agreement between Rater A and C (whose agreement ranged from 39% to 77%), since Rater B’s ratings were used as the gold standard. This average also assumes Rater A would have continued marking at the same accuracy for the com-

<table>
<thead>
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Excellent)</td>
<td>0.11</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>2 (Good)</td>
<td>0.42</td>
<td>0.46</td>
<td>0.44</td>
</tr>
<tr>
<td>3 (Fair)</td>
<td>0.30</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>4 (Poor)</td>
<td>0.83</td>
<td>0.76</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table 2: K-Nearest Neighbors Precision and Recall

<table>
<thead>
<tr>
<th>Class</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Excellent)</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2 (Good)</td>
<td>13</td>
<td>15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3 (Fair)</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4 (Poor)</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 3: K-Nearest Neighbors: Confusion Matrix

<table>
<thead>
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Excellent)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2 (Good)</td>
<td>0.43</td>
<td>0.88</td>
<td>0.58</td>
</tr>
<tr>
<td>3 (Fair)</td>
<td>0.45</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>4 (Poor)</td>
<td>0.92</td>
<td>0.67</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 4: Naive Bayes Precision and Recall
Table 5: Naive Bayes Confusion Matrix

<table>
<thead>
<tr>
<th>Class</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Excellent)</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2 (Good)</td>
<td>1</td>
<td>29</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3 (Fair)</td>
<td>0</td>
<td>13</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4 (Poor)</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 6: Machine Learner Comparison

<table>
<thead>
<tr>
<th>Machine Learner</th>
<th>Percentage Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-NN (LSA)</td>
<td>44.66%</td>
</tr>
<tr>
<td>ID3 DT (Events)</td>
<td>40.78%</td>
</tr>
<tr>
<td>NB (LSA + Events)</td>
<td>54.37%</td>
</tr>
<tr>
<td>Rater Agreement</td>
<td>58.37%</td>
</tr>
</tbody>
</table>

Table 7: Statistical Comparison

<table>
<thead>
<tr>
<th></th>
<th>Cronbach’s α</th>
<th>Kendall’s τ_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB to Rater B</td>
<td>.78</td>
<td>.59</td>
</tr>
<tr>
<td>Rater A to Rater B</td>
<td>.86</td>
<td>.72</td>
</tr>
<tr>
<td>Rater C to Rater B</td>
<td>.93</td>
<td>.82</td>
</tr>
</tbody>
</table>

Discussion

8 Discussion

From these experiments as shown in Table 6 we see that the type of machine learner and the particular features are important to correctly classify children's stories. Inspection of the results shows that separating good and excellent stories from poor stories is best performed by Naive Bayes. For our application, teachers have indicated that the classification of an excellent or good story as a poor one is considered worse than the classifying of a fair or even poor story as good. Moreover, it uses the event-based results of the Plot Comparison Algorithm so that the agent in StoryStation may use these results to inform the student what precise events and entities are missing or misused. NB is fast enough to provide possible feedback in real time and its ability to separate poor stories from good and excellent stories would allow it to be used in classrooms. It also has comparable raw accuracy to average human agreement as shown in Table 6, although it makes more errors than humans in classifying a story off by more than one class off as shown by the statistics in Table 7. The results most in its favor are shown highlighted in Table 5. It separates with few errors both excellent and good stories from the majority of poor stories.

While the event calculus captures some of the relevant defining characteristics of stories, it does not capture all of them. The types of stories that give the machine learners the most difficulty are those which are excellent and fair. One reason is that these stories are less frequent in the training data than poor and good stories. Another reason is that there are features particular to these stories that are not accounted for by an event structure or LSA. Both excellent stories and fair stories rely on very subtle features to distinguish them from good and poor stories. Good stories were characterized in the rating criteria as “parroting off of the main events,” and the event calculus naturally is good at identifying this. Poor stories have “definite problems with the recall of events,” and so are also easily identified. However, fair stories show both a lack of “understanding of the point” and “do not really flow” while the excellent story shows an “understanding of the point.” These characteristics involve relations such as the “point” of the story and connections between events. These ideas of “flow” and “point” are much more difficult to analyze automatically.

9 Conclusion

Due to its practical focus, the plot analysis of our system is very limited in nature, focusing on just the story rewriting task. Traditionally “deep” representation systems have attempted to be powerful general-purpose story understanding or generation systems. A general plot analysis agent would be more useful than our current system, which is successful by virtue of the story rewriting task being less complex than full story understanding. However, our system fulfills an immediate need in the StoryStation application, in contrast to more traditional story-understanding and story-generation systems, which are usually used as testing grounds for theoretical ideas in artificial intelligence. The system was tested and developed using a small manually collected corpus of a single rewritten story. While previous researchers who worked on this problem felt that the small size of the corpus made
machine-learning unusable, the results shows that with careful feature selection and relatively simple algorithms empirical methods can be made to work. We expect that our technique can be generalized to larger corpora of diverse types.

Our hybrid system uses both LSA and event structures to classify plot quality. The use of event structures in classifying stories allows us to detect whether particular crucial characters and events have been left out of the rewritten story. Separating the students who have written good plots from those who have done so poorly is a boon to the teachers, since often it is the students who have the most difficulty with plot that are least likely to ask a teacher for help. StoryStation is now being used in two schools as part of their classroom writing instruction over the course of the next year. Results from this study will be instrumental in shaping the future of the plot analysis system in StoryStation and the expansion of the current system into a general purpose plot analysis system for other writing tasks.

References

