Dissociable mechanisms underlying individual differences in Working Memory Capacity

Rasa Gulbinaite, Addie Johnson, Ritske de Jong, Candice C. Morey, Hedderik van Rijn
Experimental Psychology Department, University of Groningen

QUESTION
The ability to control attention to minimize distraction is the primary factor determining working memory capacity (WMC)\(^2\), a characteristic that strongly correlates with cognitive abilities, including intelligence\(^1\). We tested whether superior attention control abilities exhibited by high-WMC individuals are mediated by
- stronger suppression of irrelevant information,
- enhancement of relevant information,
- or both?

RESULTS
Behavioral performance

Attentional modulation of SSVEPs

- Both WMC groups: increased attention to the target compared to the flankers;
- Different strategies to obtain the same signal-to-noise ratio: The low-WMC increased attention to the target, whereas high-WMC suppressed attention to the flankers.

Conflict-related theta-band (3-7 Hz) power

- Increase in theta-band (3-7 Hz) power in peri-response time window (-200 - 100 ms) in frontocentral electrodes
- Main effect of congruency \((F(1,31) = 8.96, p = .005)\)

Strategic WMC-related differences in both target and distractor processing

Control analysis

Statistically significant group differences in SSVEP amplitudes were observed only in occipital electrodes that showed strong SSVEPs.

DISCUSSION

- WMC is related to the control of attention to both relevant and irrelevant information. High-WMC individuals inhibit distractors more strongly, whereas low-WMC individuals enhance targets. Two different strategies can result in similar behavioral performance, yet suppression might be more neurally efficient\(^4\).
- In a frequency-tagged version of the Eriksen flanker task, as in a standard version\(^5\), conflict-related theta power was increased. However, frontal midline theta did not show WMC-related differences.
- General implications for the use of SSVEPs to study cognitive processes. SSVEPs can be successfully applied to cognitive tasks with small stimuli and relatively short stimulus presentation times.

REFERENCES

CONTACT
rasa.gulbinaite@gmail.com